Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheaper color printing by harnessing Ben Franklin's electrostatic forces

14.11.2006
Recent advances in the basic science of electrostatics could soon lead to color laser printers that are cheaper and up to 70 percent smaller than current models, a physicist reports at this week's AVS International Symposium and Exhibition in San Francisco.

Speaking at an AVS session commemorating Benjamin Franklin's 300th birthday, physicist Lawrence Schein will explain how Franklin's pioneering studies on electrostatics have laid the foundations for the technology used in photocopiers and laser printers. Surprisingly, while these effects are well known, some of them remain among the most poorly understood areas of solid-state physics.

Even small children are familiar with the fact that charged objects can stick to each other -- probably the oldest known electromagnetic phenomenon. Electrostatic adhesion is used in photocopiers, laser printers, and fax machines to make toner particles temporarily stick to surfaces such as paper before they are permanently melted onto the sheet by heat.

However, the detailed physics of electrostatic adhesion is still poorly understood. In particular, the forces that make the plastic-based toner particles stick to surfaces during the printing process are surprisingly strong. Experimental measurements have shown these forces to be at least ten times stronger than what one would expect from the formulas first-year physics students learn from textbooks.

Electrostatic attraction between two bodies is usually calculated by using the so-called Gauss' law, said Schein, a former Xerox and IBM researcher. But its use assumes that the distance between the two bodies is large compared to the distances between the charges. In practice, however, the size of the contact areas can become very small, resulting in very strong attractive forces.

In recent research papers, Schein (schein@prodigy.net) and Stanley Czarnecki, of Torrey Pines Research, have shown how to correctly use Gauss' formula to explain the much stronger forces that had been measured experimentally. "The enhanced adhesion is due to the discreteness of the charges, some of which may lie very close to the contact point, where the electrostatic forces are strongest," Schein said.

Schein's insights have inspired the formation of Aetas Systems Inc., a technology start-up dedicated to developing new color laser-printing technology. Current color laser printers are more expensive and up to three times as large as black-and-white models. Working as a consultant for Aetas, Schein realized that reducing the strength of toner adhesion could lead to greatly simplified and cheaper color laser printers.

To reduce toner adhesion, Schein used a nanotechnology fix: he completely coated the toner particles with tiny silica balls -- as small as 10 nanometer wide, or a thousand times smaller than the toner particles themselves. The silica nanoballs keep the rough edges of the toner particle from coming into contact with a surface and minimizes the number of contact points. This minimizes the adhesion.

Laser printers use four kinds of toners -- black, cyan, magenta, and yellow -- to create four toner images before transferring them onto paper. Lower-adhesion toner makes it possible to build each color image onto a single belt without disturbing the other colors in the process. In current models, this problem is solved by using an additional belt to accumulate the color toner images one color at a time, but this adds weight, complexity, and cost. "I have a so-called desktop color laser printer," Schein said, "but it's so bulky I had to buy a special desk for it."

Instead, based on Schein's ideas Aetas is developing the design of a new generation of single-belt laser printers, whose complexity and weight will be comparable to those of black-and-white models.

Davide Castelvecchi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>