Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheaper color printing by harnessing Ben Franklin's electrostatic forces

14.11.2006
Recent advances in the basic science of electrostatics could soon lead to color laser printers that are cheaper and up to 70 percent smaller than current models, a physicist reports at this week's AVS International Symposium and Exhibition in San Francisco.

Speaking at an AVS session commemorating Benjamin Franklin's 300th birthday, physicist Lawrence Schein will explain how Franklin's pioneering studies on electrostatics have laid the foundations for the technology used in photocopiers and laser printers. Surprisingly, while these effects are well known, some of them remain among the most poorly understood areas of solid-state physics.

Even small children are familiar with the fact that charged objects can stick to each other -- probably the oldest known electromagnetic phenomenon. Electrostatic adhesion is used in photocopiers, laser printers, and fax machines to make toner particles temporarily stick to surfaces such as paper before they are permanently melted onto the sheet by heat.

However, the detailed physics of electrostatic adhesion is still poorly understood. In particular, the forces that make the plastic-based toner particles stick to surfaces during the printing process are surprisingly strong. Experimental measurements have shown these forces to be at least ten times stronger than what one would expect from the formulas first-year physics students learn from textbooks.

Electrostatic attraction between two bodies is usually calculated by using the so-called Gauss' law, said Schein, a former Xerox and IBM researcher. But its use assumes that the distance between the two bodies is large compared to the distances between the charges. In practice, however, the size of the contact areas can become very small, resulting in very strong attractive forces.

In recent research papers, Schein (schein@prodigy.net) and Stanley Czarnecki, of Torrey Pines Research, have shown how to correctly use Gauss' formula to explain the much stronger forces that had been measured experimentally. "The enhanced adhesion is due to the discreteness of the charges, some of which may lie very close to the contact point, where the electrostatic forces are strongest," Schein said.

Schein's insights have inspired the formation of Aetas Systems Inc., a technology start-up dedicated to developing new color laser-printing technology. Current color laser printers are more expensive and up to three times as large as black-and-white models. Working as a consultant for Aetas, Schein realized that reducing the strength of toner adhesion could lead to greatly simplified and cheaper color laser printers.

To reduce toner adhesion, Schein used a nanotechnology fix: he completely coated the toner particles with tiny silica balls -- as small as 10 nanometer wide, or a thousand times smaller than the toner particles themselves. The silica nanoballs keep the rough edges of the toner particle from coming into contact with a surface and minimizes the number of contact points. This minimizes the adhesion.

Laser printers use four kinds of toners -- black, cyan, magenta, and yellow -- to create four toner images before transferring them onto paper. Lower-adhesion toner makes it possible to build each color image onto a single belt without disturbing the other colors in the process. In current models, this problem is solved by using an additional belt to accumulate the color toner images one color at a time, but this adds weight, complexity, and cost. "I have a so-called desktop color laser printer," Schein said, "but it's so bulky I had to buy a special desk for it."

Instead, based on Schein's ideas Aetas is developing the design of a new generation of single-belt laser printers, whose complexity and weight will be comparable to those of black-and-white models.

Davide Castelvecchi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>