Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloudy day won't rain on laser communications

13.11.2006
Just as clouds block the sun, they interfere with laser communications systems, but Penn State researchers are using a combination of computational methods to find the silver lining and punch through the clouds.

"Radio frequency communications are generally reliable and well understood, but cannot support emerging data rate needs unless they use a large portion of the radio spectrum," says Mohsen Kavehrad, the W. L. Weiss professor of electrical engineering and director, Penn State Center for Information and Communications Technology Research. "Free space optical communications offer enormous data rates but operate much more at the mercy of the environment."

Laser light used in communications systems can carry large amounts of information, but, the dust, dirt, water vapor and gases in a fluffy cumulus cloud, scatter the light and create echoes. The loss of some light to scattering is less important than those parts of the beam that are deflected and yet reach their target, because then, various parts of the beam reach the endpoint at different times.

"All of the laser beam photons travel at the speed of light, but different paths make them arrive at different times," says Kavehrad. "The Air Force, which is funding this project through the Defense Advanced Research Projects Agency, would like us to deliver close to 3 gigabytes per second of data over a distance of 6 to 8 miles through the atmosphere."

That 6 to 8 miles is sufficient to cause an overlap of arriving data of hundreds of symbols, which causes echoes. The information arrives, but then it arrives again because the signal is distributed throughout the laser beam. In essence, the message is continuously being stepped on.

Kavehrad and Sangwoo Lee, graduate student in electrical engineering, presented their solutions to the echo problem at the recent IEEE Military Communications Conference in Wash., D.C.

"In the past, laser communications systems have been designed to depend on optical signal processing and optical apparatus," says Kavehrad. "We coupled state-of-the-art digital signal processing methods to a wireless laser communications system to obtain a reliable, high capacity optical link through the clouds."

The researchers developed an approach called free-space optical communications that not only can improve air-to-air communications, but also ground-to-air links. Because their approach provides fiber optic quality signals, it is also a solution for extending fiber optic systems to rural areas without laying cable and may eventually expand the Internet in a third dimension allowing airplane passengers a clear, continuous signal.

Using a computer simulation called the atmospheric channel model developed by Penn State's CICTR, the researchers first process the signal to shorten the overlapping data and reduce the number of overlaps. Then the system processes the remaining signal, picking out parts of the signal to make a whole and eliminate the remaining echoes. This process must be continuous with overlap shortening and then filtering so that a high-quality, fiber optic caliber message arrives at the destination. All this, while one or both of the sender and receiver are moving.

"We modeled the system using cumulus clouds, the dense fluffy ones, because they cause the most scattering and the largest echo," says Kavehrad. "Our model is also being used by Army contractors to investigate communications through smoke and gases and it does a very good job with those as well."

The computer modeled about a half-mile traverse of a cumulus cloud. While the researchers admit that they could simply process the signal to remove all echoes, the trade-offs would degrade the system in other ways, such as distance and time. Using a two-step process provides the most reliable, high-quality data transfer.

The system also uses commercially available off-the-shelf equipment and proven digital signal processing techniques.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>