Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Breaking the nanometer barrier in X-ray microscopy

Argonne National Laboratory scientists in collaboration with Xradia have created a new X-ray microscope technique capable of observing molecular-scale features, measuring less than a nanometer in height.

Combining x-ray reflection together with high resolution x-ray microscopy, scientists can now study interactions at the nanometer-scale which often can exhibit different properties and lead to new insights. Improving our understanding of interactions at the nanoscale holds promise to help us cure the sick, protect our environment and make us more secure.

This novel technique will lead to a better understanding of interfacial reactions at surfaces, such as ion adsorption, corrosion, and catalytic reactions. In particular, this method extends the capability of x-ray microscopy to observe sub-nanometer-sized interfacial features directly and in real time. This non-invasive approach complements the more widely used scanning probe microscopies and can image the topography of a solid surface without using probe-tips near the surface.

Argonne researchers together with Xradia, a firm specializing in x-ray optics and x-ray microscope systems, have achieved sensitivity to sub-nanometer sized features by using a phenomenon known as phase contrast. This breakthrough makes it possible to look directly at individual steps on a solid surface, borrowing a technique used previously in electron microscopy, "The ability to see individual nanometer-scale features is an important benchmark for X-ray microscopy" states Paul Fenter, Argonne National Laboratory Physicist. "Understanding interfacial reactivity is vital to many areas of science and technology, from the corrosion of metals to the transport of contaminants in the environment." Steve Wang of Xradia adds, "This technique opens up the possibility of watching these processes directly and will provide fundamentally new opportunities for understanding them."

This is a significant advance towards understanding the reactivity of solid-surfaces. Future studies will extend these measurements to the observation of real-time processes of mineral surfaces in contact with water. Employing a novel x-ray microscope setup developed by Xradia, and measurements performed at Argonne's Advanced Photon Source, home of the most brilliant X-ray source in the Western Hemisphere, was central to the teams' success.

Eleanor Taylor | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>