Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the nanometer barrier in X-ray microscopy

13.11.2006
Argonne National Laboratory scientists in collaboration with Xradia have created a new X-ray microscope technique capable of observing molecular-scale features, measuring less than a nanometer in height.

Combining x-ray reflection together with high resolution x-ray microscopy, scientists can now study interactions at the nanometer-scale which often can exhibit different properties and lead to new insights. Improving our understanding of interactions at the nanoscale holds promise to help us cure the sick, protect our environment and make us more secure.

This novel technique will lead to a better understanding of interfacial reactions at surfaces, such as ion adsorption, corrosion, and catalytic reactions. In particular, this method extends the capability of x-ray microscopy to observe sub-nanometer-sized interfacial features directly and in real time. This non-invasive approach complements the more widely used scanning probe microscopies and can image the topography of a solid surface without using probe-tips near the surface.

Argonne researchers together with Xradia, a firm specializing in x-ray optics and x-ray microscope systems, have achieved sensitivity to sub-nanometer sized features by using a phenomenon known as phase contrast. This breakthrough makes it possible to look directly at individual steps on a solid surface, borrowing a technique used previously in electron microscopy, "The ability to see individual nanometer-scale features is an important benchmark for X-ray microscopy" states Paul Fenter, Argonne National Laboratory Physicist. "Understanding interfacial reactivity is vital to many areas of science and technology, from the corrosion of metals to the transport of contaminants in the environment." Steve Wang of Xradia adds, "This technique opens up the possibility of watching these processes directly and will provide fundamentally new opportunities for understanding them."

This is a significant advance towards understanding the reactivity of solid-surfaces. Future studies will extend these measurements to the observation of real-time processes of mineral surfaces in contact with water. Employing a novel x-ray microscope setup developed by Xradia, and measurements performed at Argonne's Advanced Photon Source, home of the most brilliant X-ray source in the Western Hemisphere, was central to the teams' success.

Eleanor Taylor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>