Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon’s Escaping Gasses Expose Fresh Surface

10.11.2006
A fresh look at Apollo-era images combined with recent spectral data leads researchers to re-examine conventional wisdom about the Earth’s moon. Several lines of evidence suggest that the moon may have seen eruptions of interior gasses as recently as 1 million years ago, rather than 3 billion years ago – the date that had been most widely accepted.

Conventional wisdom suggests that the Earth’s moon has seen no widespread volcanic activity for at least the last 3 billion years. Now, a fresh look at existing data points to much more recent release of lunar gasses.

The study, published in the journal Nature by geologists Peter Schulz and Carlé Pieters of Brown University and Matthew Staid of the Planetary Science Institute, uses three distinct lines of evidence to support the assertion that volcanic gas has been released from the moon’s surface within the last 1 to 10 million years. The researchers focus on a D-shaped area called the Ina structure that was first recognized in images from Apollo missions.

The unusual sharpness of the features first called Schultz’s attention to the area. “Something that razor-sharp shouldn’t stay around long. It ought to be destroyed within 50 million years,” said Schulz. On Earth, wind and water quickly wear down freshly exposed surface features. On the airless moon, constant bombardment with tiny space debris accomplishes a similar result. By comparing the fine-scale surface features within the Ina structure to other areas on the moon with known ages, the team was able to place its age at closer to 2 million years.

The scarcity of asteroid impact craters on the surface within Ina provided a second line of evidence for the feature’s relative youth. The researchers identified only two clear impact craters larger than 30 meters on the 8 square kilometers of the structure’s floor. This frequency is about the same as at South Ray Crater, near the Apollo 16 landing site. The surface material ejected from South Ray Crater has long been used as a benchmark for dating other features on the moon’s surface and most lunar scientists studying these rocks agree on a date of approximately 2 million years, based on cosmic ray exposure.

The third piece of support for the authors’ hypothesis comes from comparing the spectral signatures of deposits in the Ina depression to those from very fresh craters. As lunar surface deposits weather, the wavelengths of light they reflect change in predictable ways. Overall reflectance, or albedo, gets less bright and the ratio of light at 1,000 nm wavelengths to 750 nm wavelengths increases. Based on these color ratios, the deposits on Ina’s floor are exceptionally young – and possibly even newly exposed.

The appearance of the surface at Ina does not indicate an explosive release of magma, which would result in visible rays of ejecta surrounding a central crater. Rather, it suggests a rapid release of gasses, which would have blown off the surface deposits, exposing less weathered materials. This interpretation is particularly appealing because Ina is located at the intersection of two linear valleys or rilles – like many geologically active areas on Earth.

Ina also does not appear to be alone. The authors identify at least four similar features associated with the same system of rilles, as well as others in neighboring rille systems. Although several kinds of evidence support the authors’ conclusion that the moon is more geologically active than previously thought, the only sure way to resolve the question would be to collect samples at such sites. “Ina and other similar features are great targets for future exploration, by people or robots,” said G. Jeffrey Taylor, a lunar researcher at the University of Hawaii. “They might be the best place to get a good look at the interface between the powdery regolith and the consolidated rock beneath.”

Over the years, says Schultz, amateur astronomers have seen puffs or flashes of light coming from the moon’s surface. Although most professional observers have upheld the conclusion that the moon was inactive, such sightings have kept open a window of doubt. A coordinated observation campaign, including both professional and amateur astronomers, would be one way to build additional evidence for activity, says Schultz. A gas release itself would not be visible for more than a second or so, but the dust it kicked up might stay suspended for up to 30 seconds. With modern alert networks, that’s long enough to move a professional telescope into position to see what’s happening.

NASA’s Planetary Geology and Geophysics Program supported this research. Peter Schultz and Carlé Pieters are professors of geological science at Brown University. Matthew Staid is a research scientist at the Planetary Science Institute.

Martha Downs | EurekAlert!
Further information:
http://www.brown.edu/Administration/News_Bureau/2006-07/06-051.html

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>