Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantized heat conduction by photons observed

09.11.2006
Physicists at the Low Temperature Laboratory of Helsinki University of Technology publish pathbreaking results in Nature

In a recent experiment, to be published in Nature on November 9, Dr Matthias Meschke and professor Jukka Pekola, together with Dr Wiebke Guichard, a coworker from French CNRS, investigated heat exchange between two small pieces of normal metal, connected to each other only via superconducting leads. The results demonstrate that at very low temperatures heat is transferred by electromagnetic radiation.

The PICO research group is a part of the Low Temperature Laboratory at Helsinki University of Technology - TKK, Finland. The domain of interest of the PICO research group is how heat is transported in nano- and micrometer sized devices on an ordinary silicon chip at only 0.1 degrees above absolute zero.

The project is part of the Future Electronics (TULE) Research Programme of the Academy of Finland.

Generally, even experts consider that superconductors are ideal insulators as regards to usual heat conduction. These new experimental results demonstrate that at very low temperatures heat is transferred by electromagnetic radiation, much in analogy to how light is propagated, along the superconductors, and furthermore these observations show that the heat transfer rate cannot have an arbitrary value: it is limited by what is called a quantum of thermal conductance. As is often the case, this observation contradicts our experiences in daily life. Certainly, one would not see this effect for instance while cooking an egg; it is just another example of how physical laws are changing when quantum mechanics comes into play.

These experiments are quite demanding, as they have to measure the temperature of an extremely tiny piece of a metal. Any usual thermometer would not do it, as it is simply far too big. Again, only the quantum mechanics can provide a solution: nano-sized (about 100 nm in cross-section) probes make use of the quantum mechanical effect of tunneling, that is penetration of particles through a classically forbidden area. Electrical current due to tunneling probes the energy distribution, and thus temperature, of the electrons in the metal. The experiment may have seemed too easy, unless, in order to distinguish the signal from the background, the researchers had to install an “in-situ” switch into the superconducting line: this allowed them to alternatively either pass or reject the heat by electromagnetic radiation through it.

The observation demonstrates a very basic phenomenon, which has no immediate consequences for new products or applications. Yet the observation helps us to understand the fundamental transport mechanisms in nanoscale devices. This effect has implications for, e.g., performance and design of ultra-sensitive radiation detectors in astronomy, whose operation at very low temperature is largely dependent on weak thermal coupling between the device and its environment.

Niko Rinta | alfa
Further information:
http://www.aka.fi

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>