Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanoforum report describing Nanotechnology and Construction

07.11.2006
Nanotechnology is the use of very small particles of material either by themselves or by their manipulation to create new large scale materials. The size of the particles, though, is very important because at the length scale of the nanometre, 10-9m, the properties of the material actually become affected. The precise size at which these changes are manifested varies between materials, but is usually in the order of 100 nm or less.

Nanotechnology is not a new science and it is not a new technology. It is rather an extension of the sciences and technologies that have already been in development for many years and it is the logical progression of the work that has been done to examine the nature of our world at an ever smaller scale.

A nanometre is a billionth of a metre and at that size the classical mechanics of the everyday cross over into the quantum mechanics of the nano-world. The two are, of course, linked and recent developments in the study and manipulation of materials and processes at the nanoscale offer the tantalizing prospect of producing new macro materials, properties and products. The construction business will inevitably be a beneficiary of this nanotechnology; in fact it already is in the fields of concrete, steel and glass. Concrete is stronger, more durable and more easily placed, steel tougher and glass self-cleaning. Increased strength and durability are also a part of the drive to reduce the environmental footprint of the built environment by the efficient use of resources. This is achieved both prior to the construction process by a reduction in pollution during the production of materials (e.g. cement) and also in service, through efficient use of energy due to advancements in insulation. These and many other effects of nanotechnology on the industry are discussed in the report together with comments from researchers and industry professionals.

Two nano-sized particles that stand out in their application to construction materials are titanium dioxide (TiO2) and carbon nanotubes (CNT’s). The former is being used for its ability to break down dirt or pollution and then allow it to be washed off by rain water on everything from concrete to glass and the latter is being used to strengthen and monitor concrete. CNT’s though, have many more properties, apart from exceptional strength, that are being researched in computing, aerospace and other areas and the construction industry will benefit directly or indirectly from those advancements as well.

Cost and the relatively small number of practical applications, for now, hold back much of the prospects for nanotechnology. However, construction also tends to be a fragmented, low research oriented and conservative endeavour and this plays against its adoption of new technologies, especially ones that appear so far removed from its core business. Materials though, as mentioned above, are construction’s core business and the prospects for more changes are significant in the not too distant future, in fact, the researchers surveyed predicted that many advances would arrive within five years. The sheer size and scope of the construction industry means that the accompanying economic impact will be huge.

In order to capitalize on the effects of nanotechnology on the business, however, much more funding for construction related research, increased interdisciplinary working between researchers and communication between those researchers and industry is needed. If nothing else, changes outside the immediate scope of construction (e.g. demographic or environmental) will drive the need for innovation in the industry and if construction continues to ignore nanotechnology it will be the one left paying a fortune for a last minute ticket it could have had for a song if it had acted earlier.

Mark Morrison | alfa
Further information:
http://www.nanoforum.org

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>