Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanoforum report describing Nanotechnology and Construction

07.11.2006
Nanotechnology is the use of very small particles of material either by themselves or by their manipulation to create new large scale materials. The size of the particles, though, is very important because at the length scale of the nanometre, 10-9m, the properties of the material actually become affected. The precise size at which these changes are manifested varies between materials, but is usually in the order of 100 nm or less.

Nanotechnology is not a new science and it is not a new technology. It is rather an extension of the sciences and technologies that have already been in development for many years and it is the logical progression of the work that has been done to examine the nature of our world at an ever smaller scale.

A nanometre is a billionth of a metre and at that size the classical mechanics of the everyday cross over into the quantum mechanics of the nano-world. The two are, of course, linked and recent developments in the study and manipulation of materials and processes at the nanoscale offer the tantalizing prospect of producing new macro materials, properties and products. The construction business will inevitably be a beneficiary of this nanotechnology; in fact it already is in the fields of concrete, steel and glass. Concrete is stronger, more durable and more easily placed, steel tougher and glass self-cleaning. Increased strength and durability are also a part of the drive to reduce the environmental footprint of the built environment by the efficient use of resources. This is achieved both prior to the construction process by a reduction in pollution during the production of materials (e.g. cement) and also in service, through efficient use of energy due to advancements in insulation. These and many other effects of nanotechnology on the industry are discussed in the report together with comments from researchers and industry professionals.

Two nano-sized particles that stand out in their application to construction materials are titanium dioxide (TiO2) and carbon nanotubes (CNT’s). The former is being used for its ability to break down dirt or pollution and then allow it to be washed off by rain water on everything from concrete to glass and the latter is being used to strengthen and monitor concrete. CNT’s though, have many more properties, apart from exceptional strength, that are being researched in computing, aerospace and other areas and the construction industry will benefit directly or indirectly from those advancements as well.

Cost and the relatively small number of practical applications, for now, hold back much of the prospects for nanotechnology. However, construction also tends to be a fragmented, low research oriented and conservative endeavour and this plays against its adoption of new technologies, especially ones that appear so far removed from its core business. Materials though, as mentioned above, are construction’s core business and the prospects for more changes are significant in the not too distant future, in fact, the researchers surveyed predicted that many advances would arrive within five years. The sheer size and scope of the construction industry means that the accompanying economic impact will be huge.

In order to capitalize on the effects of nanotechnology on the business, however, much more funding for construction related research, increased interdisciplinary working between researchers and communication between those researchers and industry is needed. If nothing else, changes outside the immediate scope of construction (e.g. demographic or environmental) will drive the need for innovation in the industry and if construction continues to ignore nanotechnology it will be the one left paying a fortune for a last minute ticket it could have had for a song if it had acted earlier.

Mark Morrison | alfa
Further information:
http://www.nanoforum.org

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>