Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum coherence possible in incommensurate electronic systems

06.11.2006
Researchers at the University of Illinois at Urbana-Champaign have demonstrated that quantum coherence is possible in electronic systems that are incommensurate, thereby removing one obstacle in the development of quantum devices.

Electronic effects in thin films and at interfaces lie at the heart of modern solid-state electronic technology. As device dimensions shrink toward the nanoscale, quantum coherence and interference phenomena become increasingly important.

"At quantum dimensions, quantum mechanics says device components will couple together and act in a concerted manner, where everything affects everything else," said Tai-Chang Chiang, a professor of physics and a researcher at the university's Frederick Seitz Materials Research Laboratory. "Most scientists assume that electronic layers must be commensurate, so electrons will flow without being diverted or scattered."

In fact, however, most material interfaces are incommensurate as a result of differences in crystal sizes, symmetries or atomic spacing. Random scattering of electrons was thought to destroy quantum coherence in such systems at the nanoscale.

Now, by studying electron fringe structure in silver films on highly doped silicon substrates, Chiang and his research group show that even when electronic layers are incommensurate, they can still be coherent. The researchers report their findings in the Nov. 3 issue of the journal Science.

In work performed at the Synchrotron Radiation Center at the University of Wisconsin at Madison, the researchers grew atomically uniform silver films on highly doped n-type silicon substrates. Then they used a technique called angle-resolved photoemission to examine the fine-structured electronic fringes.

Although the silver films and silicon substrates are lattice mismatched and incommensurate, the wave functions are compatible and can be matched over the interface plane, Chiang said. The resulting state is coherent throughout the entire system.

The fringes the scientists recorded correspond to electronic states extending over the silver film as a quantum well and reaching into the silicon substrate as a quantum slope, with the two parts coherently coupled through an incommensurate interface structure.

"An important conclusion drawn from the present study is that coherent wave function engineering, as is traditionally carried out in lattice-matched epitaxial systems, is possible for incommensurate systems," the researchers wrote, "which can substantially broaden the selection of materials useful for coherent device architecture."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>