Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculi carried out in the UGR will check the existence of rays in Titan’s atmosphere

06.11.2006
The mission started in 1997, when the satellite Cassini and the probe Huygens started together their trip Saturn, the second biggest planet of the solar system and famous for its rings.

At the end of 2004 they reached their objective and set their division in motion: Cassini, constructed by the NASA, heavier (6 tons), will orbit around the planet until it stops operating in 2008; small Huygens (just 350 kilos), a product of the European space agency (ESA), started its trip to Titan last Christmas and will reach its surface the 14th of January, providing data Cassini will send to Earth.

The main aim of this project, one of the most ambitious in the last 20 years, is checking if there are favourable conditions for life in Saturn and Titan. One of the factors they intend to study is electric activity in the atmosphere of the satellite as, according to one of the main scientific theories on the origin of life on Earth, this process could burst from electric discharges which “broke” the molecules, which where simpler at the beginning, generating more complex structures lead to organic molecules.

Storm measurement

That is why checking Titan’s electric activity is so important. HASI (Huygens Atmospheric Structure Instrument), is the main instrument to this end. It is situated in Huygens and it has been developed by European scientists with the collaboration of the Andalusian Institute for Astrophysics to cross the 170 kilometres of Titan’s atmosphere, they will carry out measurements that could not be done otherwise. Scientists presume that there must be electric activity, because on Earth, with a less dense atmosphere, about 2,000 storms cause 50 rays per second.

But the question is how to register storms in an experimental way. Different attempts carried out by Cassini, and even by mission Voyager (1980), have been unsuccessful. “The irrefutable proof of electric activity in the atmosphere of a planet or satellite are Schumann´s frequencies”, argues Juan Antonio Morente, researcher of the group ‘Electrodynamics of Transitory Phenomenon’ of the University of Granada (Universidad de Granada [http://www.ugr.es]), supervised by Alfonso Salinas. These frecuencias are like the fingertip of the atmospheric electric activity, as they remain stored in the large “soundbox” formed by the solid surface and the ionosphere.

Schumann predicted by mathematic calculus which would be the frequencies in which there would be electromagnetic resonances on earth’s atmosphere. However, “there is a gap between predictions and measurements, as the ionosphere is a system with leakages due to its high conductivity”, explains Morente. One of his research lines centres on creating numeric models simulating electromagnetic phenomenon in atmospheres of different planets or satellites. The model is based on a three-dimensional circuit called “electric analogue” which works just like the original system, in this case the electromagnetic cavity of the atmosphere.

Atmospheric models

They can be analysed through a computer program also developed by these scientists in the UGR [http://www.ugr.es]. This way, they can predict at what frequency electromagnetic resonances will be detected. The model recreating earth’s atmosphere “predicted with high accuracy the displacement of Schumann’s frequencies due to the leakage related to conductivity”, reminds Morente. Through these works, Konrad Schwingenschuch, of the Graz Institute for Space Research (Austria) and scientific coordinator of the instrument HASI in the mission Cassini-Huygens, got in touch with the researchers of Granada to carry out a model of Titan’s atmosphere.

The scientists of the UGR carried out several models from the present data on Titan’s aeronomy which incorporate different scientific hypotheses on unknown aspects of the satellite, such as the features of its surface or the atmosphere’s conductivity. This work, published in the journal of the American Astronomic Society Icarus in 2002, will be useful as a reference to adjust the measuring the probe Huygens will take of Titan’s activity. According to this model, what do they intend to achieve?

“There may be electric activity but it may not come out due to the density, high deepth and conductivity of the atmosphere. Or there may not be any activity, although it is a very dynamic atmosphere even with at such low temperatures (-180ºC). In any case, it is difficult to predict”, comments Juan Antonio Morente. The collaboration of the research group of Granada with the Graz Institute for Space Research continues in the mission Mars-Netlander, a project of the ESA which intends to study Mars´ magnetic field. The launch is predicted in 2007.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>