Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculi carried out in the UGR will check the existence of rays in Titan’s atmosphere

06.11.2006
The mission started in 1997, when the satellite Cassini and the probe Huygens started together their trip Saturn, the second biggest planet of the solar system and famous for its rings.

At the end of 2004 they reached their objective and set their division in motion: Cassini, constructed by the NASA, heavier (6 tons), will orbit around the planet until it stops operating in 2008; small Huygens (just 350 kilos), a product of the European space agency (ESA), started its trip to Titan last Christmas and will reach its surface the 14th of January, providing data Cassini will send to Earth.

The main aim of this project, one of the most ambitious in the last 20 years, is checking if there are favourable conditions for life in Saturn and Titan. One of the factors they intend to study is electric activity in the atmosphere of the satellite as, according to one of the main scientific theories on the origin of life on Earth, this process could burst from electric discharges which “broke” the molecules, which where simpler at the beginning, generating more complex structures lead to organic molecules.

Storm measurement

That is why checking Titan’s electric activity is so important. HASI (Huygens Atmospheric Structure Instrument), is the main instrument to this end. It is situated in Huygens and it has been developed by European scientists with the collaboration of the Andalusian Institute for Astrophysics to cross the 170 kilometres of Titan’s atmosphere, they will carry out measurements that could not be done otherwise. Scientists presume that there must be electric activity, because on Earth, with a less dense atmosphere, about 2,000 storms cause 50 rays per second.

But the question is how to register storms in an experimental way. Different attempts carried out by Cassini, and even by mission Voyager (1980), have been unsuccessful. “The irrefutable proof of electric activity in the atmosphere of a planet or satellite are Schumann´s frequencies”, argues Juan Antonio Morente, researcher of the group ‘Electrodynamics of Transitory Phenomenon’ of the University of Granada (Universidad de Granada [http://www.ugr.es]), supervised by Alfonso Salinas. These frecuencias are like the fingertip of the atmospheric electric activity, as they remain stored in the large “soundbox” formed by the solid surface and the ionosphere.

Schumann predicted by mathematic calculus which would be the frequencies in which there would be electromagnetic resonances on earth’s atmosphere. However, “there is a gap between predictions and measurements, as the ionosphere is a system with leakages due to its high conductivity”, explains Morente. One of his research lines centres on creating numeric models simulating electromagnetic phenomenon in atmospheres of different planets or satellites. The model is based on a three-dimensional circuit called “electric analogue” which works just like the original system, in this case the electromagnetic cavity of the atmosphere.

Atmospheric models

They can be analysed through a computer program also developed by these scientists in the UGR [http://www.ugr.es]. This way, they can predict at what frequency electromagnetic resonances will be detected. The model recreating earth’s atmosphere “predicted with high accuracy the displacement of Schumann’s frequencies due to the leakage related to conductivity”, reminds Morente. Through these works, Konrad Schwingenschuch, of the Graz Institute for Space Research (Austria) and scientific coordinator of the instrument HASI in the mission Cassini-Huygens, got in touch with the researchers of Granada to carry out a model of Titan’s atmosphere.

The scientists of the UGR carried out several models from the present data on Titan’s aeronomy which incorporate different scientific hypotheses on unknown aspects of the satellite, such as the features of its surface or the atmosphere’s conductivity. This work, published in the journal of the American Astronomic Society Icarus in 2002, will be useful as a reference to adjust the measuring the probe Huygens will take of Titan’s activity. According to this model, what do they intend to achieve?

“There may be electric activity but it may not come out due to the density, high deepth and conductivity of the atmosphere. Or there may not be any activity, although it is a very dynamic atmosphere even with at such low temperatures (-180ºC). In any case, it is difficult to predict”, comments Juan Antonio Morente. The collaboration of the research group of Granada with the Graz Institute for Space Research continues in the mission Mars-Netlander, a project of the ESA which intends to study Mars´ magnetic field. The launch is predicted in 2007.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>