Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculi carried out in the UGR will check the existence of rays in Titan’s atmosphere

06.11.2006
The mission started in 1997, when the satellite Cassini and the probe Huygens started together their trip Saturn, the second biggest planet of the solar system and famous for its rings.

At the end of 2004 they reached their objective and set their division in motion: Cassini, constructed by the NASA, heavier (6 tons), will orbit around the planet until it stops operating in 2008; small Huygens (just 350 kilos), a product of the European space agency (ESA), started its trip to Titan last Christmas and will reach its surface the 14th of January, providing data Cassini will send to Earth.

The main aim of this project, one of the most ambitious in the last 20 years, is checking if there are favourable conditions for life in Saturn and Titan. One of the factors they intend to study is electric activity in the atmosphere of the satellite as, according to one of the main scientific theories on the origin of life on Earth, this process could burst from electric discharges which “broke” the molecules, which where simpler at the beginning, generating more complex structures lead to organic molecules.

Storm measurement

That is why checking Titan’s electric activity is so important. HASI (Huygens Atmospheric Structure Instrument), is the main instrument to this end. It is situated in Huygens and it has been developed by European scientists with the collaboration of the Andalusian Institute for Astrophysics to cross the 170 kilometres of Titan’s atmosphere, they will carry out measurements that could not be done otherwise. Scientists presume that there must be electric activity, because on Earth, with a less dense atmosphere, about 2,000 storms cause 50 rays per second.

But the question is how to register storms in an experimental way. Different attempts carried out by Cassini, and even by mission Voyager (1980), have been unsuccessful. “The irrefutable proof of electric activity in the atmosphere of a planet or satellite are Schumann´s frequencies”, argues Juan Antonio Morente, researcher of the group ‘Electrodynamics of Transitory Phenomenon’ of the University of Granada (Universidad de Granada [http://www.ugr.es]), supervised by Alfonso Salinas. These frecuencias are like the fingertip of the atmospheric electric activity, as they remain stored in the large “soundbox” formed by the solid surface and the ionosphere.

Schumann predicted by mathematic calculus which would be the frequencies in which there would be electromagnetic resonances on earth’s atmosphere. However, “there is a gap between predictions and measurements, as the ionosphere is a system with leakages due to its high conductivity”, explains Morente. One of his research lines centres on creating numeric models simulating electromagnetic phenomenon in atmospheres of different planets or satellites. The model is based on a three-dimensional circuit called “electric analogue” which works just like the original system, in this case the electromagnetic cavity of the atmosphere.

Atmospheric models

They can be analysed through a computer program also developed by these scientists in the UGR [http://www.ugr.es]. This way, they can predict at what frequency electromagnetic resonances will be detected. The model recreating earth’s atmosphere “predicted with high accuracy the displacement of Schumann’s frequencies due to the leakage related to conductivity”, reminds Morente. Through these works, Konrad Schwingenschuch, of the Graz Institute for Space Research (Austria) and scientific coordinator of the instrument HASI in the mission Cassini-Huygens, got in touch with the researchers of Granada to carry out a model of Titan’s atmosphere.

The scientists of the UGR carried out several models from the present data on Titan’s aeronomy which incorporate different scientific hypotheses on unknown aspects of the satellite, such as the features of its surface or the atmosphere’s conductivity. This work, published in the journal of the American Astronomic Society Icarus in 2002, will be useful as a reference to adjust the measuring the probe Huygens will take of Titan’s activity. According to this model, what do they intend to achieve?

“There may be electric activity but it may not come out due to the density, high deepth and conductivity of the atmosphere. Or there may not be any activity, although it is a very dynamic atmosphere even with at such low temperatures (-180ºC). In any case, it is difficult to predict”, comments Juan Antonio Morente. The collaboration of the research group of Granada with the Graz Institute for Space Research continues in the mission Mars-Netlander, a project of the ESA which intends to study Mars´ magnetic field. The launch is predicted in 2007.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>