Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antiprotons Four Times More Effective than Protons for Cell Irradiation

01.11.2006
A pioneering experiment at CERN with potential future application in cancer therapy has produced its first results. Started in 2003, ACE (Antiproton Cell Experiment) is the first investigation of the biological effects of antiprotons.

“We have taken the first step towards a novel treatment for cancer. The results show that antiprotons are four times more effective than protons at terminating live cells. Although it still has to be compared with other existing methods, it is a breakthrough in this area of investigation.” says Michael Doser at CERN, one of the scientists collaborating on the experiment. ACE brings together a team of experts in the fields of physics, biology, and medicine from 10 institutes around the world.

Current particle beam therapy commonly uses protons to destroy tumour cells inside a patient. The ACE experiment directly compared the effectiveness of cell irradiation using protons and antiprotons. To simulate a cross-section of tissue inside a body, tubes were filled with hamster cells suspended in gelatine. Researchers sent a beam of protons or antiprotons with a range of 2 cm depth into one end of the tube, and evaluated the fraction of surviving cells after irradiation along the path of the beam.

The results showed that antiprotons were four times more effective than protons. When comparing a beam of antiprotons with a beam of protons that cause identical damage at the entrance to the target, the experiment found the damage to cells inflicted at the end of the beam path to be four times higher for antiprotons than for protons. Michael Holzscheiter, spokesperson of the ACE experiment, summarises: “To achieve the same level of damage to cells at the target area one needs four times fewer antiprotons than protons. This significantly reduces the damage to the cells along the entrance channel of the beam for antiprotons compared to protons. Due to the antiproton's unsurpassed ability to preserve healthy tissue while causing damage to a specific area, this type of beam could be highly valuable in treating cases of recurring cancer, where this property is vital.”

Antiprotons are antimatter; they have to be produced in small amounts in a laboratory with the help of a particle accelerator. When matter and antimatter particles meet, they annihilate, or destroy each other, transforming their mass into energy. The experiment makes use of this property as the antiproton would annihilate with a part of the nucleus of an atom in a tumour cell. The fragments produced from the energy released by the annihilation would be projected into adjacent tumour cells, which are in turn destroyed.

“CERN is a unique facility for this work. It is the only place in the world where an antiproton beam of sufficiently low energy and high quality is available. This is crucial for our research. Without access to the antiproton decelerator facility, these experiments would simply not have been possible.” says Niels Bassler, co-spokesperson of ACE. “This experiment is a fantastic example of how research in particle physics can generate innovative solutions with potential medical benefits.”

Researchers are currently conducting more tests to irradiate cells at a greater depth (about 15cm below the surface). Experiments to compare the effectiveness of antiprotons with another form of treatment using carbon ions will begin next month at GSI (Gesellschaft für Schwerionenforschung) in Germany. Further tests are planned to fully assess the effectiveness and suitability of antiprotons for cancer therapy, and to assure that less damage is caused to healthy tissues compared to other methods.

If all goes well, the first clinical application would still be a decade or more into the future.

Michael Holzscheiter | alfa
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>