Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Awards Funding For Possible UA-LED Asteroid Sample-Return Mission

NASA announced today that it has awarded a University of Arizona-led team $1.2 million to further develop a proposed Discovery-class mission called "OSIRIS."

OSIRIS would return a pristine sample of a scientifically priceless asteroid to Earth in 2017. Regents' Professor and UA Lunar and Planetary Laboratory (LPL) Director Michael Drake is principal investigator for the proposed $415 million mission.

Drake and LPL Associate Professor Dante Lauretta, who is OSIRIS deputy principal investigator, will direct the mission science. LPL will also provide OSIRIS' cameras. NASA's Goddard Space Flight Center in Greenbelt, Md., is responsible for overall mission management. Lockheed Martin Space Systems will build the flight system, the sampling mechanism, and the sample return capsule. Lockheed also will perform spacecraft operations.

The $1.2 million award is for the next seven months, when the team will prepare a more detailed engineering study of how it will accomplish mission science objectives.

OSIRIS would be the first spacecraft sent to explore a "carbonaceous" asteroid, a type of asteroid that contains primitive carbon compounds that have survived since solar system formation 4.5 billion years ago.

OSIRIS is both a mythological figure and an acronym. "O" stands for the scientific theme, origins. "SI" is for spectral interpretation, or taking images of the asteroid at wavelengths that will reveal its composition. "RI," or resource identification, is surveying the asteroid for such useful resources as water and metals. "S" stands for security, learning how to predict the detailed motion Earth-approaching asteroids.

OSIRIS of Egyptian mythology is the god of life and fertility, the god who taught Egyptians agriculture, Lauretta noted. There's an analogy to the proposed 21st century space mission, he added. "We're looking at the kind of object that we think brought life to Earth, that is, objects that seeded Earth with early biomolecules, the precursors of life."

Not only would OSIRIS delve into the evolution of our solar system and life, it would identify such resources as water, precious metals and other materials needed by future human explorers in near-Earth space, Drake and Lauretta said.

And, not least, OSIRIS would accurately measure the "Yarkovsky effect" for the first time.

Without understanding the Yarkovsky effect -- a force created by the uneven solar heating of an asteroid's surface -- humans can't defend Earth against potentially catastrophic asteroid impacts. There's no sure way to predict an Earth-approaching asteroid's orbit unless you can factor in how the Yarkovsky effect will change that orbit, Drake and Lauretta said.

Their targeted near-Earth asteroid was discovered in 1999 and is named RQ36. It is roughly 580 meters in diameter, or about two-fifths of a mile.

Asteroid RQ36 orbits between about 83 million and 126 million miles from the sun, swinging within about 280,000 miles of Earth orbit, or roughly 40,000 miles beyond the moon. The International Astronomical Union's Minor Planet Center has officially classified RQ36 as a "potentially hazardous asteroid."

Asteroid RQ36 is especially rare because it linked to other asteroids that are outgassing volatiles and organic molecules like a comet. Only four such comet-like asteroids have been found in the main asteroid belt between Mars and Jupiter, Lauretta said.

Asteroids in the main belt between Mars and Jupiter are the leftovers of terrestrial planet formation. Near-Earth asteroids are fragments of main belt asteroids that were sent careening out of the belt in collisions with larger asteroids millions of years ago. Those which move into Earth-approaching orbits present hazards -- hazards that Congress has mandated that NASA address.

But near-Earth asteroids also present great opportunities, Lauretta said. "The analogy is that, much the same way rocks and sediments in a river bed reveal information about the type of material found upstream, we can use near-Earth objects to discover a great deal about the nature of bodies found in the main belt," he said. "That's what we're doing in sampling a near-Earth object -- we're looking at the rocks that are tumbling in from the main asteroid belt, a place that's too expensive to sample with a Discovery-class mission."

If selected, OSIRIS would launch in fall 2011 and reach Asteroid RQ36 in February 2013. It would rendezvous with RQ36 for nearly 300 days, using scanning lidar, an instrument similar to radar but using light instead of radio, and LPL-designed cameras to map and photograph the asteroid at visible and infrared wavelengths.

Before departing no later than December 2013 for its 4-year journey back to Earth, OSIRIS would use a robotic arm and the asteroid's weak gravity to collect at least 150 grams (about 5 ounces) of primitive asteroid regolith (dirt) for analysis by scientists at Lauretta's LPL lab and around the world. NASA's Johnson Space Center in Houston will curate returned samples.

In a novel arrangement ideal for longer missions, each of OSIRIS' science and management teams partner lead senior personnel with mid-career and early-career team members. Drake is the senior scientist mentoring the younger Lauretta in directing OSIRIS science, for example. The LPL's Peter Smith heads the imaging team that will build OSIRIS' camera system, for another example. The LPL's Bashar Rizk, Professor Tim Swindle and Carl Hergenrother are younger or mid-career scientists on Smith's team.

NASA also selected two other proposed new Discovery-class missions, and three more Discovery-class proposals that would make use of existing NASA spacecraft, for concept development funding. The space agency is expected to review developed proposals next year and select the final winner, or winners, from currently competing Discovery class missions in summer 2008.

Lori Stiles | University of Arizona
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>