Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique imaging uncovers the invisible world where surfaces meet

30.10.2006
May uncover new ways to address pollution

Hoping to find new ways of addressing environmental pollution, a physicist at the University of Wisconsin-Milwaukee (UWM) has developed some novel ways to observe what happens inside a cell when it comes in contact with contaminants or when toxic substances touch soil and water.

An object's molecules and electrons are always in motion, vibrating and wiggling.

Carol Hirschmugl, an associate professor of physics, tracks what happens to molecules when they meet the surface of a particular material or move around in a living cell by taking advantage of these vibrations and using them to map the movement of chemicals within the molecules.

Before she can witness any action, though, she has to detect all the parts involved. Using a device called a synchrotron, Hirschmugl can probe what she could not with a normal microscope. The synchrotron emits energy at all spectral frequencies, from infrared (IR) to X-rays. The light emitted by IR, which is what Hirschmugl uses, is intense, but not visible with the human eye.

IR reveals the vibrations of molecules in a cell, which act as "signatures," allowing Hirschmugl to identify the material she's working with. She is using the technique to observe how algae digest carbon dioxide (and give off oxygen), something that has implications for controlling air pollution.

In her work with algae, she studies the distribution of proteins, lipids and carbohydrates, molecules that play a major role in metabolizing the organism's food (photosynthesis). It's important in fully understanding a process that is so vitally linked to human respiration and environmental health.

"Since the alga uses up a lot of CO2," she says, "what we're interested in is what happens when you change its environmental conditions. We want to look at how its biological makeup changes when exposed to say, runoff pollution."

Recently funded by the National Science Foundation, Hirschmugl will be developing new ways to "see" how alga reacts to its environment.

"Then, I'm taking the question one step further and seeing how the distribution of its parts changes because of interactions with nitrates or ammonium, which come from fertilizer runoff or sewage."

Her ultimate goal is to see the internal changes actually take place in a living sample.

Electrons behaving madly

In a second imaging project, Hirschmugl observes the arrangement of specific molecules on a solid surface, again enlisting the wave properties of electrons.

"What we are looking at is way smaller than the wavelength of light," says UWM physicist Dilano Saldin, who collaborates with Hirschmugl. "It can't be seen with the eye. So we need to study the energy distribution from electrons scattered from the surface."

The technique Hirschmugl uses is a modified method of low-energy electron diffraction (LEED). By shooting a minute beam of electrons onto a surface, and using a sensitive detection plate, she creates a visual picture of the electrons as they are spread out in all directions and eventually hit the plate. After sophisticated analysis, the resulting pattern can reveal the structure of the surface material.

Why go to all this trouble? To reveal the workings of the atomic world, says Saldin, whose expertise includes the interpretation of the patterns made by the scattered electrons. Since something as tiny as a molecule cannot be seen, it's is difficult to observe its behavior under various conditions.

And changes are happening. And at the atomic level, the interplay of materials at the surface can cause unusual molecular rearrangements that alter the way the materials behave. And most interactions of a solid with its environment take place at the surface.

This kind of transformation is behind the process of corrosion in metals, for example.

The aim of Hirschmugl's surface studies is to examine the behavior of water molecules when they come in contact with an oxide surface, such as soil. The dynamics of this are not well understood, but could be valuable in determining how contaminants flow through soil.

Driving Hirschmugl's inquiry is the fact that water and soil interactive in unpredictable ways, depending on which atoms in the water are touching the oxide surface.

"Water and soil present a really different interface," she says. "I want to know what happens next. Do the water molecules break down or do they remain intact?

"With these techniques, we're getting access to the dynamics of the molecules and the statics (location) at the same time."

Carol Hirschmugl | EurekAlert!
Further information:
http://www.uwm.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>