Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique imaging uncovers the invisible world where surfaces meet

30.10.2006
May uncover new ways to address pollution

Hoping to find new ways of addressing environmental pollution, a physicist at the University of Wisconsin-Milwaukee (UWM) has developed some novel ways to observe what happens inside a cell when it comes in contact with contaminants or when toxic substances touch soil and water.

An object's molecules and electrons are always in motion, vibrating and wiggling.

Carol Hirschmugl, an associate professor of physics, tracks what happens to molecules when they meet the surface of a particular material or move around in a living cell by taking advantage of these vibrations and using them to map the movement of chemicals within the molecules.

Before she can witness any action, though, she has to detect all the parts involved. Using a device called a synchrotron, Hirschmugl can probe what she could not with a normal microscope. The synchrotron emits energy at all spectral frequencies, from infrared (IR) to X-rays. The light emitted by IR, which is what Hirschmugl uses, is intense, but not visible with the human eye.

IR reveals the vibrations of molecules in a cell, which act as "signatures," allowing Hirschmugl to identify the material she's working with. She is using the technique to observe how algae digest carbon dioxide (and give off oxygen), something that has implications for controlling air pollution.

In her work with algae, she studies the distribution of proteins, lipids and carbohydrates, molecules that play a major role in metabolizing the organism's food (photosynthesis). It's important in fully understanding a process that is so vitally linked to human respiration and environmental health.

"Since the alga uses up a lot of CO2," she says, "what we're interested in is what happens when you change its environmental conditions. We want to look at how its biological makeup changes when exposed to say, runoff pollution."

Recently funded by the National Science Foundation, Hirschmugl will be developing new ways to "see" how alga reacts to its environment.

"Then, I'm taking the question one step further and seeing how the distribution of its parts changes because of interactions with nitrates or ammonium, which come from fertilizer runoff or sewage."

Her ultimate goal is to see the internal changes actually take place in a living sample.

Electrons behaving madly

In a second imaging project, Hirschmugl observes the arrangement of specific molecules on a solid surface, again enlisting the wave properties of electrons.

"What we are looking at is way smaller than the wavelength of light," says UWM physicist Dilano Saldin, who collaborates with Hirschmugl. "It can't be seen with the eye. So we need to study the energy distribution from electrons scattered from the surface."

The technique Hirschmugl uses is a modified method of low-energy electron diffraction (LEED). By shooting a minute beam of electrons onto a surface, and using a sensitive detection plate, she creates a visual picture of the electrons as they are spread out in all directions and eventually hit the plate. After sophisticated analysis, the resulting pattern can reveal the structure of the surface material.

Why go to all this trouble? To reveal the workings of the atomic world, says Saldin, whose expertise includes the interpretation of the patterns made by the scattered electrons. Since something as tiny as a molecule cannot be seen, it's is difficult to observe its behavior under various conditions.

And changes are happening. And at the atomic level, the interplay of materials at the surface can cause unusual molecular rearrangements that alter the way the materials behave. And most interactions of a solid with its environment take place at the surface.

This kind of transformation is behind the process of corrosion in metals, for example.

The aim of Hirschmugl's surface studies is to examine the behavior of water molecules when they come in contact with an oxide surface, such as soil. The dynamics of this are not well understood, but could be valuable in determining how contaminants flow through soil.

Driving Hirschmugl's inquiry is the fact that water and soil interactive in unpredictable ways, depending on which atoms in the water are touching the oxide surface.

"Water and soil present a really different interface," she says. "I want to know what happens next. Do the water molecules break down or do they remain intact?

"With these techniques, we're getting access to the dynamics of the molecules and the statics (location) at the same time."

Carol Hirschmugl | EurekAlert!
Further information:
http://www.uwm.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>