Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unique imaging uncovers the invisible world where surfaces meet

May uncover new ways to address pollution

Hoping to find new ways of addressing environmental pollution, a physicist at the University of Wisconsin-Milwaukee (UWM) has developed some novel ways to observe what happens inside a cell when it comes in contact with contaminants or when toxic substances touch soil and water.

An object's molecules and electrons are always in motion, vibrating and wiggling.

Carol Hirschmugl, an associate professor of physics, tracks what happens to molecules when they meet the surface of a particular material or move around in a living cell by taking advantage of these vibrations and using them to map the movement of chemicals within the molecules.

Before she can witness any action, though, she has to detect all the parts involved. Using a device called a synchrotron, Hirschmugl can probe what she could not with a normal microscope. The synchrotron emits energy at all spectral frequencies, from infrared (IR) to X-rays. The light emitted by IR, which is what Hirschmugl uses, is intense, but not visible with the human eye.

IR reveals the vibrations of molecules in a cell, which act as "signatures," allowing Hirschmugl to identify the material she's working with. She is using the technique to observe how algae digest carbon dioxide (and give off oxygen), something that has implications for controlling air pollution.

In her work with algae, she studies the distribution of proteins, lipids and carbohydrates, molecules that play a major role in metabolizing the organism's food (photosynthesis). It's important in fully understanding a process that is so vitally linked to human respiration and environmental health.

"Since the alga uses up a lot of CO2," she says, "what we're interested in is what happens when you change its environmental conditions. We want to look at how its biological makeup changes when exposed to say, runoff pollution."

Recently funded by the National Science Foundation, Hirschmugl will be developing new ways to "see" how alga reacts to its environment.

"Then, I'm taking the question one step further and seeing how the distribution of its parts changes because of interactions with nitrates or ammonium, which come from fertilizer runoff or sewage."

Her ultimate goal is to see the internal changes actually take place in a living sample.

Electrons behaving madly

In a second imaging project, Hirschmugl observes the arrangement of specific molecules on a solid surface, again enlisting the wave properties of electrons.

"What we are looking at is way smaller than the wavelength of light," says UWM physicist Dilano Saldin, who collaborates with Hirschmugl. "It can't be seen with the eye. So we need to study the energy distribution from electrons scattered from the surface."

The technique Hirschmugl uses is a modified method of low-energy electron diffraction (LEED). By shooting a minute beam of electrons onto a surface, and using a sensitive detection plate, she creates a visual picture of the electrons as they are spread out in all directions and eventually hit the plate. After sophisticated analysis, the resulting pattern can reveal the structure of the surface material.

Why go to all this trouble? To reveal the workings of the atomic world, says Saldin, whose expertise includes the interpretation of the patterns made by the scattered electrons. Since something as tiny as a molecule cannot be seen, it's is difficult to observe its behavior under various conditions.

And changes are happening. And at the atomic level, the interplay of materials at the surface can cause unusual molecular rearrangements that alter the way the materials behave. And most interactions of a solid with its environment take place at the surface.

This kind of transformation is behind the process of corrosion in metals, for example.

The aim of Hirschmugl's surface studies is to examine the behavior of water molecules when they come in contact with an oxide surface, such as soil. The dynamics of this are not well understood, but could be valuable in determining how contaminants flow through soil.

Driving Hirschmugl's inquiry is the fact that water and soil interactive in unpredictable ways, depending on which atoms in the water are touching the oxide surface.

"Water and soil present a really different interface," she says. "I want to know what happens next. Do the water molecules break down or do they remain intact?

"With these techniques, we're getting access to the dynamics of the molecules and the statics (location) at the same time."

Carol Hirschmugl | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>