Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists crack open stellar evolution

30.10.2006
New code reconciles discrepancies with the Big Bang

Using 3D models run on some of the fastest computers in the world, Laboratory physicists have created a mathematical code that cracks a mystery surrounding stellar evolution.

For years, physicists have theorized that low-mass stars (about one to two times the size of our sun) produce great amounts of helium 3 (³He). When they exhaust the hydrogen in their cores to become red giants, most of their makeup is ejected, substantially enriching the universe in this light isotope of helium.

This enrichment conflicts with the Big Bang predictions. Scientists theorized that stars destroy this ³He by assuming that nearly all stars were rapidly rotating, but even this failed to bring the evolution results into agreement with the Big Bang.

Now, by modeling a red giant with a fully 3D hydrodynamic code, LLNL researchers identified the mechanism of how and where low-mass stars destroy the ³He that they produce during evolution.

They found that ³He burning in a region just outside of the helium core, previously thought to be stable, creates conditions that drive this newly discovered mixing mechanism.

Bubbles of material, slightly enriched in hydrogen and substantially depleted in ³He, float to the surface of the star and are replaced by ³He-rich material for additional burning. In this way the stars destroy their excess ³He, without assuming any additional conditions (like rapid rotation).

“This confirms how elements evolved in the universe and makes it consistent with the Big Bang,” said David Dearborn, a Lawrence Livermore National Laboratory physicist. “The previous one-dimensional model did not recognize the instability created by burning ³He.”

The same process applies to low-mass metal poor suns, which may have been more important than metal-rich stars like the sun throughout the earlier part of galactic history in determining the ³He abundance of the interstellar medium.

The research appears in the Oct. 26 edition of Science Express.

The Big Bang is the scientific theory of how the universe emerged from a tremendously dense and hot state about 13.7 billion years ago.

The Big Bang produced about 10 percent 4He, .001 percent ³He with almost the rest made up of hydrogen.

Later, low mass stars should have increased that ³He production to .01 percent. However, observations of ³He in the interstellar medium show that it remains at .001 percent. So where did that ³He go?

That’s where the Livermore team comes in. Livermore scientists Peter Eggleton and Dearborn collaborated with John Lattanzio of the Centre for Stellar and Planetary Astrophysics in Australia to create a code that describes how ³He burns during star formation so that the makeup of the universe after the Big Bang is reconciled.

“Prior to our work, it was perceived that the ³He in the envelope was largely indestructible, and would be blown off later into space, thus enriching the interstellar medium and causing the conflict with the Big Bang,” said Eggleton, an astrophysicist and lead author of the paper. “What we find is that ³He is unexpectedly destructible, by a mixing process driven by a phenomenon that has been ignored so far.”

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>