Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big Bang theory saved

30.10.2006
An apparent discrepancy in the Big Bang theory of the universe's evolution has been reconciled by astrophysicists examining the movement of gases in stars.

Professor John Lattanzio from Monash's School of Mathematical Sciences and Director of the Centre for Stellar and Planetary Astrophysics said the confusion surrounding the Big Bang revolved around the amount of the gas Helium 3 in the universe.

"The Big Bang theory predicts a certain amount of Helium 3 in the universe," Professor Lattanzio said. "The trouble is, low mass stars (about one to two times the size of our sun) also make Helium 3 as a side product of burning the hydrogen in their cores.

"It's been thought that when the star becomes a giant it mixes the helium 3 to its surface and, near the end of its life, spews the helium 3 into space just before it becomes a planetary nebula.

"But there are inconsistencies with the amount of Helium 3 predicted to be in the universe and the amount that's actually there; there's much less than expected."

Some scientists have theorised that the rapid rotation of low mass stars destroys the helium 3 they produce. But computer models that have included this rotation, while showing some destruction of helium 3, have not been able to reconcile the Big Bang theory.

Professor Lattanzio, in collaboration with Dr Peter Eggleton and Dr David Dearborn from the Lawrence Livermore National Laboratories in the US, ran 3D computer models of a red giant's life on some of the world's fastest computers to investigate whether there was some sort of gaseous mixing occurring in stars that destroyed Helium 3.

Their findings have been published in today's issue of the international journal Science.

Near the end of a star's life there is a 'core flash' and it was at around this time that the computer models revealed a small instability in the movement of the gases in the star. "When we looked at this in 3D we found this hydrodynamic instability caused mixing and destroyed the helium 3 so that none was released into space," Professor Lattanzio said.

"This apparent problem with the Big Bang has been solved – the helium 3 in the universe comes from the Big Bang and low mass stars, although they produce helium 3, do not release any into the universe because they destroy it."

Penny Fannin | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>