Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big Bang theory saved

30.10.2006
An apparent discrepancy in the Big Bang theory of the universe's evolution has been reconciled by astrophysicists examining the movement of gases in stars.

Professor John Lattanzio from Monash's School of Mathematical Sciences and Director of the Centre for Stellar and Planetary Astrophysics said the confusion surrounding the Big Bang revolved around the amount of the gas Helium 3 in the universe.

"The Big Bang theory predicts a certain amount of Helium 3 in the universe," Professor Lattanzio said. "The trouble is, low mass stars (about one to two times the size of our sun) also make Helium 3 as a side product of burning the hydrogen in their cores.

"It's been thought that when the star becomes a giant it mixes the helium 3 to its surface and, near the end of its life, spews the helium 3 into space just before it becomes a planetary nebula.

"But there are inconsistencies with the amount of Helium 3 predicted to be in the universe and the amount that's actually there; there's much less than expected."

Some scientists have theorised that the rapid rotation of low mass stars destroys the helium 3 they produce. But computer models that have included this rotation, while showing some destruction of helium 3, have not been able to reconcile the Big Bang theory.

Professor Lattanzio, in collaboration with Dr Peter Eggleton and Dr David Dearborn from the Lawrence Livermore National Laboratories in the US, ran 3D computer models of a red giant's life on some of the world's fastest computers to investigate whether there was some sort of gaseous mixing occurring in stars that destroyed Helium 3.

Their findings have been published in today's issue of the international journal Science.

Near the end of a star's life there is a 'core flash' and it was at around this time that the computer models revealed a small instability in the movement of the gases in the star. "When we looked at this in 3D we found this hydrodynamic instability caused mixing and destroyed the helium 3 so that none was released into space," Professor Lattanzio said.

"This apparent problem with the Big Bang has been solved – the helium 3 in the universe comes from the Big Bang and low mass stars, although they produce helium 3, do not release any into the universe because they destroy it."

Penny Fannin | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>