Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nevada Terawatt Facility makes important advancement in unraveling mysteries of fusion energy

30.10.2006
Article in Physical Review Letters by NTF researcher points to 'absolutely beautiful example' of a new way to measure fundamental processes

Unraveling one of most grandiose and heady problems in physics -- the creation of controlled fusion energy -- is still decades away.

But thanks to research done recently on a smaller, less grandiose scale at the Nevada Terawatt Facility at the University of Nevada, Reno and in the University's College of Science, an important step has been made in the understanding of some fundamental processes required to achieve fusion energy.

And it all came thanks to work done on the shoulders of Z-pinches that are more "midget" in stature than the "giant" lasers at national laboratories that can generate up to 40 trillion watts of x-ray power.

The Z-pinch is a type of plasma confinement system that uses a fast electrical current in the plasma to generate a magnetic field. "Shots" of fast, 100-nanosecond pulses exceeding 20 million amps are fired through tungsten wires on the order of tens of microns, at the Sandia National Laboratory Z-pinch.

"With our 1 million amp NTF Z-pinch, we can explore some very interesting physics that can be applied to the bigger pinches at the national laboratories," says Vladimir Ivanov, whose research with wire array Z-pinches at NTF has led to a journal article in the prestigious journal, Physical Review Letters.

In Ivanov's article, "Dynamics of mass transport and magnetic field fields in low wire array z-pinches," Ivanov and a team of students and researchers found the microscopic effects that cause inefficiencies limiting the conversion of electrical energy required for implosion energy.

The implications of Ivanov's work are important, says Tom Cowan, director of the NTF. "This is the fundamental stuff, the physics if you will, that is limiting the transfer of the electrical energy into the implosion energy which is responsible for the heating and x-ray production that will eventually lead to a fusion energy reaction in a laboratory," Cowan says.

Ivanov's experiment used the 1 million amp "Zebra" Z-pinch generator along with plasma diagnostics that included five-frame laser probing of the z-pinch in three directions. This measured mass transport during implosion.

Previously, laser probing work in this area proved difficult to read. Images from the "shots" often suffered from poor resolution, blurring, or lack of contrast.

The images created by Ivanov's technique were vivid. They showed not only plasma "bubbles" rising on breaks in the wires used, but what Cowan calls the "fingers" of matter left behind from the implosion.

"With these trailing fingers of mass, some of the current is left behind," Cowan says. "The current drives the implosion process, so these inefficiencies are very important. The sequence of these little failure modes, these little fuse effects happening on the wires, is what is limiting the big experiments. By understanding this better, we can come up with new ways at looking at how the current flows into the plasma, and how the mass interacts."

In a deft stroke of research creativity, Ivanov was able to use his previous research in laser plasma physics to his advantage in dealing with his experiment in Z-pinch plasma physics. Thus, Ivanov attacked the experiment suspecting that previous Z-pinches, working in deliveries of 100-nanosecond pulses, could be improved if one could understand the dynamics on a shorter time scale. For typical laser plasmas, a delivery of a nanosecond or even faster, such as a thousandth of a nanosecond, would be more common.

"So he decided that he would like to look at this with shorter laser pulses, and that was the enabling piece of the technology to get the useful information out," Cowan says.

"This is one of these absolutely beautiful examples where Vladimir, his students and his team have developed brand new ways to measure the fundamental processes such as the current flow and the mass flow when plasma bubbles accelerate to implode and heat a plasma," Cowan says.

John Trent | EurekAlert!
Further information:
http://www.unr.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>