Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Five years of bright light for top research

27.10.2006
The Swiss Light Source (SLS) is the most advanced synchrotron light source in the world and continually draws scientists from all over the world whose experiments benefit from the high quality beam.

The Swiss Light Source (SLS) started operating five years ago in Villigen, Switzerland. Since then, the facility at the Paul Scherrer Institute (PSI) has been available for use by researchers from universities and industry. The SLS generates beams of light which are extremely fine and highly intensive. The facility acts as both a gigantic microscope and a multi-coloured micro-spotlight. It enables researchers to penetrate hitherto unexplored microcosmic depths. For example, it can help them decode the structure of proteins, or explore the characteristics of superconductors – and all at magnitudes of thousandths of a millimetre.

A successful tool for international science

In 2005, 830 researchers undertook a total of 677 experiments. These scientists mainly come to PSI from Switzerland, Germany, Italy and France; and they include biologists, chemists, physicists, environmental scientists and geologists. And still they come! Since the SLS went into operation with four beamlines, the rate of occupation has increased steadily. There are now ten beamlines in operation and they are so popular that the demand for measuring time outstrips supply several times over. By 2010, there should be eighteen to twenty beamlines in operation.

The SLS is the most advanced synchrotron light source in the world. The beam provided here is very brilliant and extremely stable, which gives better experimental results. This premium quality is based on new technologies that were developed at PSI and have frequently been copied since then. The construction of the SLS has already paid its way in the form of research published in scientific journals. According to Timothy Richmond winner of the 2006 Marcel Benoist Prize; “The SLS is one of the best facilities in the world, and has advanced my work”. Richmond is a Professor at the ETH in Zurich, and was honoured with the “Swiss Nobel Prize” for clarifying the structure of nucleosomes, the basic units of chromosomes.

Dr. Heinz Weyer | alfa
Further information:
http://www.psi.ch

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>