Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When is a supersolid not quite so super?

26.10.2006
Brown University physicist Humphrey Maris and colleagues Satoshi Sasaki and Sebastien Balibar of the l’Ecole Normale Supérieure have narrowed the field of possible explanations for the weird behavior of supersolid helium. Their simple but extremely revealing experiment suggests that movement along grain boundaries is a more plausible explanation than Bose-Einstein condensates.

A deceptively simple experiment, recently published in the journal Science, has moved physics one step closer to explaining the odd behavior of supersolid helium. The unusual state of matter – in which a portion of the atoms are able to flow through a solid crystal with no resistance – was predicted as early as 1969 but not observed until recently.

In 2004, Eunsong Kim and Moses Chan from Penn State University published the first experimental evidence that the predicted behavior could actually be demonstrated in the laboratory. In the last two years, a flurry of papers attempted to clarify under what conditions the behavior emerges. So when Humphrey Maris, a professor of physics at Brown University, visited colleagues Satoshi Sasaki and Sebastien Balibar at l’Ecole Normale Supérieure in Paris, they decided they needed to plan an experiment that could shed some new light on the problem.

“We were trying to think of an easy way to do something on superfluid solids,” said Maris. “The idea of something flowing through something solid is pretty weird, isn’t it? That’s what we like about it.”

Maris and company hatched an elegant plan that uses kitchen table physics to examine the behavior of this strange new state of matter. To understand how they probed the phenomenon, try this simple experiment. Fill a drinking straw with water and cover it with your finger. Place it in a glass of water. As long as your finger seals the straw, the water won’t flow out into the cup. As soon as you release your finger, it does. The water doesn’t flow out of the straw until you open a path that allows air to replace it.

That is the same principle the team used to detect whether solid helium could be made to flow through itself. They suspended an inverted test tube inside a closed reservoir filled with liquid helium. By manipulating the pressure and temperature, they solidified the helium in the bottom of the reservoir and partway up the tube. (Although they did the experiment at temperatures very close to absolute zero, the word frozen doesn’t quite apply. Solid helium – unlike water ice – is denser than the liquid form and becomes solid only under high pressures.)

The researchers set up the experiment so that the liquid-solid interface was higher inside the tube than outside. Then they watched. If helium atoms were passing through the solid phase, the solid and liquid levels would line up inside and outside of the tube, like water flowing out of your straw. “The experiment we came up with is the first one to actually see a flow of matter through the solid,” said Maris.

In 10 out of 13 experiments, the levels didn’t budge. But in three preparations, they saw just what they expected of supersolid helium: a constant rate of movement. The three crystals that showed movement also had observable cusps indicating where grain boundaries within the solid crystal emerged on the surface. If helium was able to move along a grain boundary, the system behaved like a supersolid. If there was no path from inside to outside, it stayed put.

One popular explanation for the supersolid behavior seen in earlier experiments is that vacancies in the solid helium can become coordinated at very low temperatures into what is called a Bose-Einstein condensate. In this coordinated state, the vacancies move through the solid without resistance. But this explanation should work just as well in a perfect crystal as in one riddled with grain boundaries. The scientists concluded that if the grain boundaries are essential to the behavior, then a different mechanism must be at work.

The authors of this paper suggest that a layer of superfluid helium only a single molecule thick forms at the grain boundaries, creating a path for movement through the solid. Such behavior, they say, could be fairly called supersolid, but not supercrystalline, as the matter moves through a solid mass of helium, but not through a perfect crystal.

Their results help make sense of several earlier papers which showed that eliminating crystal imperfections put a stop to supersolid behavior. Fully explaining this odd state of matter will take much more work, but a clever experiment and a keen bit of observation have helped to narrow the range of possible explanations.

The article “Superfluidity of grain boundaries and supersolid behavior” by Satoshi Sasaki, Ryousuke Ishiguro, Frederic Caupin, Humphrey J. Maris and Sebastien Balibar, was published in the journal Science on Aug. 25, 2006.

The work was funded by the National Science Foundation.

Martha Downs | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>