Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When is a supersolid not quite so super?

26.10.2006
Brown University physicist Humphrey Maris and colleagues Satoshi Sasaki and Sebastien Balibar of the l’Ecole Normale Supérieure have narrowed the field of possible explanations for the weird behavior of supersolid helium. Their simple but extremely revealing experiment suggests that movement along grain boundaries is a more plausible explanation than Bose-Einstein condensates.

A deceptively simple experiment, recently published in the journal Science, has moved physics one step closer to explaining the odd behavior of supersolid helium. The unusual state of matter – in which a portion of the atoms are able to flow through a solid crystal with no resistance – was predicted as early as 1969 but not observed until recently.

In 2004, Eunsong Kim and Moses Chan from Penn State University published the first experimental evidence that the predicted behavior could actually be demonstrated in the laboratory. In the last two years, a flurry of papers attempted to clarify under what conditions the behavior emerges. So when Humphrey Maris, a professor of physics at Brown University, visited colleagues Satoshi Sasaki and Sebastien Balibar at l’Ecole Normale Supérieure in Paris, they decided they needed to plan an experiment that could shed some new light on the problem.

“We were trying to think of an easy way to do something on superfluid solids,” said Maris. “The idea of something flowing through something solid is pretty weird, isn’t it? That’s what we like about it.”

Maris and company hatched an elegant plan that uses kitchen table physics to examine the behavior of this strange new state of matter. To understand how they probed the phenomenon, try this simple experiment. Fill a drinking straw with water and cover it with your finger. Place it in a glass of water. As long as your finger seals the straw, the water won’t flow out into the cup. As soon as you release your finger, it does. The water doesn’t flow out of the straw until you open a path that allows air to replace it.

That is the same principle the team used to detect whether solid helium could be made to flow through itself. They suspended an inverted test tube inside a closed reservoir filled with liquid helium. By manipulating the pressure and temperature, they solidified the helium in the bottom of the reservoir and partway up the tube. (Although they did the experiment at temperatures very close to absolute zero, the word frozen doesn’t quite apply. Solid helium – unlike water ice – is denser than the liquid form and becomes solid only under high pressures.)

The researchers set up the experiment so that the liquid-solid interface was higher inside the tube than outside. Then they watched. If helium atoms were passing through the solid phase, the solid and liquid levels would line up inside and outside of the tube, like water flowing out of your straw. “The experiment we came up with is the first one to actually see a flow of matter through the solid,” said Maris.

In 10 out of 13 experiments, the levels didn’t budge. But in three preparations, they saw just what they expected of supersolid helium: a constant rate of movement. The three crystals that showed movement also had observable cusps indicating where grain boundaries within the solid crystal emerged on the surface. If helium was able to move along a grain boundary, the system behaved like a supersolid. If there was no path from inside to outside, it stayed put.

One popular explanation for the supersolid behavior seen in earlier experiments is that vacancies in the solid helium can become coordinated at very low temperatures into what is called a Bose-Einstein condensate. In this coordinated state, the vacancies move through the solid without resistance. But this explanation should work just as well in a perfect crystal as in one riddled with grain boundaries. The scientists concluded that if the grain boundaries are essential to the behavior, then a different mechanism must be at work.

The authors of this paper suggest that a layer of superfluid helium only a single molecule thick forms at the grain boundaries, creating a path for movement through the solid. Such behavior, they say, could be fairly called supersolid, but not supercrystalline, as the matter moves through a solid mass of helium, but not through a perfect crystal.

Their results help make sense of several earlier papers which showed that eliminating crystal imperfections put a stop to supersolid behavior. Fully explaining this odd state of matter will take much more work, but a clever experiment and a keen bit of observation have helped to narrow the range of possible explanations.

The article “Superfluidity of grain boundaries and supersolid behavior” by Satoshi Sasaki, Ryousuke Ishiguro, Frederic Caupin, Humphrey J. Maris and Sebastien Balibar, was published in the journal Science on Aug. 25, 2006.

The work was funded by the National Science Foundation.

Martha Downs | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>