Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When is a supersolid not quite so super?

26.10.2006
Brown University physicist Humphrey Maris and colleagues Satoshi Sasaki and Sebastien Balibar of the l’Ecole Normale Supérieure have narrowed the field of possible explanations for the weird behavior of supersolid helium. Their simple but extremely revealing experiment suggests that movement along grain boundaries is a more plausible explanation than Bose-Einstein condensates.

A deceptively simple experiment, recently published in the journal Science, has moved physics one step closer to explaining the odd behavior of supersolid helium. The unusual state of matter – in which a portion of the atoms are able to flow through a solid crystal with no resistance – was predicted as early as 1969 but not observed until recently.

In 2004, Eunsong Kim and Moses Chan from Penn State University published the first experimental evidence that the predicted behavior could actually be demonstrated in the laboratory. In the last two years, a flurry of papers attempted to clarify under what conditions the behavior emerges. So when Humphrey Maris, a professor of physics at Brown University, visited colleagues Satoshi Sasaki and Sebastien Balibar at l’Ecole Normale Supérieure in Paris, they decided they needed to plan an experiment that could shed some new light on the problem.

“We were trying to think of an easy way to do something on superfluid solids,” said Maris. “The idea of something flowing through something solid is pretty weird, isn’t it? That’s what we like about it.”

Maris and company hatched an elegant plan that uses kitchen table physics to examine the behavior of this strange new state of matter. To understand how they probed the phenomenon, try this simple experiment. Fill a drinking straw with water and cover it with your finger. Place it in a glass of water. As long as your finger seals the straw, the water won’t flow out into the cup. As soon as you release your finger, it does. The water doesn’t flow out of the straw until you open a path that allows air to replace it.

That is the same principle the team used to detect whether solid helium could be made to flow through itself. They suspended an inverted test tube inside a closed reservoir filled with liquid helium. By manipulating the pressure and temperature, they solidified the helium in the bottom of the reservoir and partway up the tube. (Although they did the experiment at temperatures very close to absolute zero, the word frozen doesn’t quite apply. Solid helium – unlike water ice – is denser than the liquid form and becomes solid only under high pressures.)

The researchers set up the experiment so that the liquid-solid interface was higher inside the tube than outside. Then they watched. If helium atoms were passing through the solid phase, the solid and liquid levels would line up inside and outside of the tube, like water flowing out of your straw. “The experiment we came up with is the first one to actually see a flow of matter through the solid,” said Maris.

In 10 out of 13 experiments, the levels didn’t budge. But in three preparations, they saw just what they expected of supersolid helium: a constant rate of movement. The three crystals that showed movement also had observable cusps indicating where grain boundaries within the solid crystal emerged on the surface. If helium was able to move along a grain boundary, the system behaved like a supersolid. If there was no path from inside to outside, it stayed put.

One popular explanation for the supersolid behavior seen in earlier experiments is that vacancies in the solid helium can become coordinated at very low temperatures into what is called a Bose-Einstein condensate. In this coordinated state, the vacancies move through the solid without resistance. But this explanation should work just as well in a perfect crystal as in one riddled with grain boundaries. The scientists concluded that if the grain boundaries are essential to the behavior, then a different mechanism must be at work.

The authors of this paper suggest that a layer of superfluid helium only a single molecule thick forms at the grain boundaries, creating a path for movement through the solid. Such behavior, they say, could be fairly called supersolid, but not supercrystalline, as the matter moves through a solid mass of helium, but not through a perfect crystal.

Their results help make sense of several earlier papers which showed that eliminating crystal imperfections put a stop to supersolid behavior. Fully explaining this odd state of matter will take much more work, but a clever experiment and a keen bit of observation have helped to narrow the range of possible explanations.

The article “Superfluidity of grain boundaries and supersolid behavior” by Satoshi Sasaki, Ryousuke Ishiguro, Frederic Caupin, Humphrey J. Maris and Sebastien Balibar, was published in the journal Science on Aug. 25, 2006.

The work was funded by the National Science Foundation.

Martha Downs | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>