Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When is a supersolid not quite so super?

26.10.2006
Brown University physicist Humphrey Maris and colleagues Satoshi Sasaki and Sebastien Balibar of the l’Ecole Normale Supérieure have narrowed the field of possible explanations for the weird behavior of supersolid helium. Their simple but extremely revealing experiment suggests that movement along grain boundaries is a more plausible explanation than Bose-Einstein condensates.

A deceptively simple experiment, recently published in the journal Science, has moved physics one step closer to explaining the odd behavior of supersolid helium. The unusual state of matter – in which a portion of the atoms are able to flow through a solid crystal with no resistance – was predicted as early as 1969 but not observed until recently.

In 2004, Eunsong Kim and Moses Chan from Penn State University published the first experimental evidence that the predicted behavior could actually be demonstrated in the laboratory. In the last two years, a flurry of papers attempted to clarify under what conditions the behavior emerges. So when Humphrey Maris, a professor of physics at Brown University, visited colleagues Satoshi Sasaki and Sebastien Balibar at l’Ecole Normale Supérieure in Paris, they decided they needed to plan an experiment that could shed some new light on the problem.

“We were trying to think of an easy way to do something on superfluid solids,” said Maris. “The idea of something flowing through something solid is pretty weird, isn’t it? That’s what we like about it.”

Maris and company hatched an elegant plan that uses kitchen table physics to examine the behavior of this strange new state of matter. To understand how they probed the phenomenon, try this simple experiment. Fill a drinking straw with water and cover it with your finger. Place it in a glass of water. As long as your finger seals the straw, the water won’t flow out into the cup. As soon as you release your finger, it does. The water doesn’t flow out of the straw until you open a path that allows air to replace it.

That is the same principle the team used to detect whether solid helium could be made to flow through itself. They suspended an inverted test tube inside a closed reservoir filled with liquid helium. By manipulating the pressure and temperature, they solidified the helium in the bottom of the reservoir and partway up the tube. (Although they did the experiment at temperatures very close to absolute zero, the word frozen doesn’t quite apply. Solid helium – unlike water ice – is denser than the liquid form and becomes solid only under high pressures.)

The researchers set up the experiment so that the liquid-solid interface was higher inside the tube than outside. Then they watched. If helium atoms were passing through the solid phase, the solid and liquid levels would line up inside and outside of the tube, like water flowing out of your straw. “The experiment we came up with is the first one to actually see a flow of matter through the solid,” said Maris.

In 10 out of 13 experiments, the levels didn’t budge. But in three preparations, they saw just what they expected of supersolid helium: a constant rate of movement. The three crystals that showed movement also had observable cusps indicating where grain boundaries within the solid crystal emerged on the surface. If helium was able to move along a grain boundary, the system behaved like a supersolid. If there was no path from inside to outside, it stayed put.

One popular explanation for the supersolid behavior seen in earlier experiments is that vacancies in the solid helium can become coordinated at very low temperatures into what is called a Bose-Einstein condensate. In this coordinated state, the vacancies move through the solid without resistance. But this explanation should work just as well in a perfect crystal as in one riddled with grain boundaries. The scientists concluded that if the grain boundaries are essential to the behavior, then a different mechanism must be at work.

The authors of this paper suggest that a layer of superfluid helium only a single molecule thick forms at the grain boundaries, creating a path for movement through the solid. Such behavior, they say, could be fairly called supersolid, but not supercrystalline, as the matter moves through a solid mass of helium, but not through a perfect crystal.

Their results help make sense of several earlier papers which showed that eliminating crystal imperfections put a stop to supersolid behavior. Fully explaining this odd state of matter will take much more work, but a clever experiment and a keen bit of observation have helped to narrow the range of possible explanations.

The article “Superfluidity of grain boundaries and supersolid behavior” by Satoshi Sasaki, Ryousuke Ishiguro, Frederic Caupin, Humphrey J. Maris and Sebastien Balibar, was published in the journal Science on Aug. 25, 2006.

The work was funded by the National Science Foundation.

Martha Downs | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Supersensitive through quantum entanglement
28.06.2017 | Universität Stuttgart

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>