Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undergraduate Helps Discover Beautiful Quark Combinations

25.10.2006
University of Rochester physics undergraduate Scott Field participated in the search for two subatomic particles whose existence was announced today by scientists at the Fermi National Accelerator Laboratory (Fermilab) in Illinois. Field's research focused on the extremely rare quark of the "bottom" or "beauty" variety.

For his work, Field received the Department of Physics and Astronomy Stoddard Prize for the best thesis of 2006. His supervisor, department chair Arie Bodek, won the 2004 American Physical Society's Panofsky Prize for measuring the distribution of quarks inside protons and neutrons. Bodek's doctoral thesis provided the evidence of the quark's existence and was the basis for the 1990 Nobel Prize in physics.

There are six types of quarks: up, down, strange, charm, bottom/beauty, and top/truth. Particles with three quarks are called baryons, the most common of which are protons and neutrons. A proton has an up-up-down combination, while a neutron consists of down-down-up.

Scientists have observed many baryons, but combinations including the heavy bottom quark have remained elusive because they are difficult to produce: a lot of energy is required to create these heavier particles. In fact, until the evidence announced today by the Collider Detector at Fermilab (CDF) group, scientists had observed only one type of baryon with a bottom quark. CDF physicists now have evidence of two more types of baryons, one with an up-up-bottom combination, the other with down-down-bottom. These can be thought of as a proton and neutron with the third quark replaced by a bottom quark.

Fermilab's Tevatron collider hurls protons and antiprotons through a four-mile circular accelerator close to the speed of light. Billions of particles smash together, releasing an enormous amount of energy, which creates other particles such as the two newly discovered baryons.

Analyzing the Tevatron data, physicists observed approximately seventy up-up-bottom particles and seventy down-down-bottom particles. As predicted by theory, the new particles decay within a tiny fraction of a second and have a mass of about six times that of a regular proton.

Rochester faculty who are members of the CDF group include professors Bodek and Kevin McFarland, and senior scientists Willis Sakumoto, Howard Budd, and Pawel de Barbaro. Field started his research with the Rochester CDF group by spending a summer as an REU (Research Experience for Undergraduates) student at Fermilab and continued his work during the academic year.

As professor Bodek says, "The discovery fills another open spot in the periodic table of baryons and verifies the power of the standard model of particles and forces. The University of Rochester is very proud of Scott Field's contribution."

For additional information about the discovery, see the Fermilab press release at http://www.fnal.gov/pub/presspass/press_releases/sigma-b-baryon.html.

Lois Gresh | EurekAlert!
Further information:
http://www.rochester.edu
http://www.fnal.gov/pub/presspass/press_releases/sigma-b-baryon.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>