Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Undergraduate Helps Discover Beautiful Quark Combinations

University of Rochester physics undergraduate Scott Field participated in the search for two subatomic particles whose existence was announced today by scientists at the Fermi National Accelerator Laboratory (Fermilab) in Illinois. Field's research focused on the extremely rare quark of the "bottom" or "beauty" variety.

For his work, Field received the Department of Physics and Astronomy Stoddard Prize for the best thesis of 2006. His supervisor, department chair Arie Bodek, won the 2004 American Physical Society's Panofsky Prize for measuring the distribution of quarks inside protons and neutrons. Bodek's doctoral thesis provided the evidence of the quark's existence and was the basis for the 1990 Nobel Prize in physics.

There are six types of quarks: up, down, strange, charm, bottom/beauty, and top/truth. Particles with three quarks are called baryons, the most common of which are protons and neutrons. A proton has an up-up-down combination, while a neutron consists of down-down-up.

Scientists have observed many baryons, but combinations including the heavy bottom quark have remained elusive because they are difficult to produce: a lot of energy is required to create these heavier particles. In fact, until the evidence announced today by the Collider Detector at Fermilab (CDF) group, scientists had observed only one type of baryon with a bottom quark. CDF physicists now have evidence of two more types of baryons, one with an up-up-bottom combination, the other with down-down-bottom. These can be thought of as a proton and neutron with the third quark replaced by a bottom quark.

Fermilab's Tevatron collider hurls protons and antiprotons through a four-mile circular accelerator close to the speed of light. Billions of particles smash together, releasing an enormous amount of energy, which creates other particles such as the two newly discovered baryons.

Analyzing the Tevatron data, physicists observed approximately seventy up-up-bottom particles and seventy down-down-bottom particles. As predicted by theory, the new particles decay within a tiny fraction of a second and have a mass of about six times that of a regular proton.

Rochester faculty who are members of the CDF group include professors Bodek and Kevin McFarland, and senior scientists Willis Sakumoto, Howard Budd, and Pawel de Barbaro. Field started his research with the Rochester CDF group by spending a summer as an REU (Research Experience for Undergraduates) student at Fermilab and continued his work during the academic year.

As professor Bodek says, "The discovery fills another open spot in the periodic table of baryons and verifies the power of the standard model of particles and forces. The University of Rochester is very proud of Scott Field's contribution."

For additional information about the discovery, see the Fermilab press release at

Lois Gresh | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>