Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undergraduate Helps Discover Beautiful Quark Combinations

25.10.2006
University of Rochester physics undergraduate Scott Field participated in the search for two subatomic particles whose existence was announced today by scientists at the Fermi National Accelerator Laboratory (Fermilab) in Illinois. Field's research focused on the extremely rare quark of the "bottom" or "beauty" variety.

For his work, Field received the Department of Physics and Astronomy Stoddard Prize for the best thesis of 2006. His supervisor, department chair Arie Bodek, won the 2004 American Physical Society's Panofsky Prize for measuring the distribution of quarks inside protons and neutrons. Bodek's doctoral thesis provided the evidence of the quark's existence and was the basis for the 1990 Nobel Prize in physics.

There are six types of quarks: up, down, strange, charm, bottom/beauty, and top/truth. Particles with three quarks are called baryons, the most common of which are protons and neutrons. A proton has an up-up-down combination, while a neutron consists of down-down-up.

Scientists have observed many baryons, but combinations including the heavy bottom quark have remained elusive because they are difficult to produce: a lot of energy is required to create these heavier particles. In fact, until the evidence announced today by the Collider Detector at Fermilab (CDF) group, scientists had observed only one type of baryon with a bottom quark. CDF physicists now have evidence of two more types of baryons, one with an up-up-bottom combination, the other with down-down-bottom. These can be thought of as a proton and neutron with the third quark replaced by a bottom quark.

Fermilab's Tevatron collider hurls protons and antiprotons through a four-mile circular accelerator close to the speed of light. Billions of particles smash together, releasing an enormous amount of energy, which creates other particles such as the two newly discovered baryons.

Analyzing the Tevatron data, physicists observed approximately seventy up-up-bottom particles and seventy down-down-bottom particles. As predicted by theory, the new particles decay within a tiny fraction of a second and have a mass of about six times that of a regular proton.

Rochester faculty who are members of the CDF group include professors Bodek and Kevin McFarland, and senior scientists Willis Sakumoto, Howard Budd, and Pawel de Barbaro. Field started his research with the Rochester CDF group by spending a summer as an REU (Research Experience for Undergraduates) student at Fermilab and continued his work during the academic year.

As professor Bodek says, "The discovery fills another open spot in the periodic table of baryons and verifies the power of the standard model of particles and forces. The University of Rochester is very proud of Scott Field's contribution."

For additional information about the discovery, see the Fermilab press release at http://www.fnal.gov/pub/presspass/press_releases/sigma-b-baryon.html.

Lois Gresh | EurekAlert!
Further information:
http://www.rochester.edu
http://www.fnal.gov/pub/presspass/press_releases/sigma-b-baryon.html

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>