Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory explains enhanced superconductivity in nanowires

20.10.2006
Superconducting wires are used in magnetic resonance imaging machines, high-speed magnetic-levitation trains, and in sensitive devices that detect variations in the magnetic field of a brain. Eventually, ultra-narrow superconducting wires might be used in power lines designed to carry electrical energy long distances with little loss.

Now, researchers at the University of Illinois at Urbana-Champaign not only have discovered an unusual phenomenon in which ultra-narrow wires show enhanced superconductivity when exposed to strong magnetic fields, they also have developed a theory to explain it.

Magnetic fields are generally observed to suppress a material's ability to exhibit superconductivity – the ability of materials to carry electrical current without any resistance at low enough temperatures. Deviations from this convention have been observed, but there is no commonly accepted explanation for these exceptions, although several ideas have been proposed.

As reported in the Sept. 29 issue of Physical Review Letters, U. of I. physics professor Alexey Bezryadin (pronounced BEZ-ree-ah-dun) and his research group have studied the effect of applying a magnetic field to ultra-narrow superconducting wires only a few hundred atoms across, and have used a microscopic theory proposed by physics professor Paul Goldbart and his team to explain the results.

"My group discovered that magnetic fields can enhance the critical current in superconducting wires with very small diameters," Bezryadin said. "We spoke with many colleagues and reached the consensus that this phenomenon is indeed curious."

Magnetic fields have long been known to suppress superconductivity by raising the kinetic energy of the electrons and by influencing the electron spins. Magnetic atoms, if present in the wires, also inhibit superconductivity.

Nevertheless, as reported in the Sept. 15 issue of Europhysics Letters, Goldbart, postdoctoral researcher Tzu-Chieh Wei and graduate student David Pekker proposed that the enhancement observed by Bezyradin's group was due to magnetic moments in the wires.

"Even though the two effects – magnetic fields and magnetic moments – work separately to diminish superconductivity, together one effect weakens the other, leading to an enhancement of the superconducting properties, at least until very large fields are applied," Goldbart said.

As for the origin of these magnetic moments, the collaborating groups proposed that exposure of the wires to oxygen in the atmosphere causes magnetic moments to form on the wire surfaces. On their own, the moments weaken the superconductivity, but the magnetic field inhibits their ability to do this. This effect shows up in ultra-narrow wires because so many of their atoms lie near the surface, where the magnetic moments form.

With postdoctoral research associate Andrey Rogachev (now a physics professor at the University of Utah) and graduate student Anthony Bollinger, Bezryadin deposited either niobium or an alloy of molybdenum and germanium onto carbon nanotubes to fabricate wires that were less than 10 nanometers wide. The superconductivity of these wires under a range of applied magnetic fields was examined, and the experimental results were compared with the proposed theory, revealing an excellent correlation between the two.

"The results of this work may provide a key to explaining our previous findings that nanowires undergo an abrupt transition from superconductor to insulator as they get smaller," said Bezryadin, referring to work published in the Sept. 27 issue of Europhysics Letters.

Kristen Aramthanapon | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>