Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The moon's south pole: Very high resolution, radar images find rocks abundant, but no ice sheets

Using the highest resolution radar-signal images ever made of the moon – images from the National Science Foundation's (NSF) Arecibo Telescope in Arecibo, P.R., and the NSF's Robert C. Byrd Telescope in Green Bank, W.Va. – planetary astronomers have found no evidence for ice in craters at the lunar south pole. Cornell University, Smithsonian Institution and Australian scientists report the findings in the latest Nature (Oct. 19, 2006).

"These new results do not preclude ice being present as small grains in the lunar soil based on the Lunar Prospector's discovery of enhanced hydrogen concentrations at the lunar poles," said Donald Campbell, Cornell professor of astronomy and a principal investigator. "There is always the possibility that concentrated deposits exist in a few of the shadowed locations not visible to radars on Earth, but any current planning for landers or bases at the lunar poles should not count on this."

Echoes from radar signals transmitted to the moon from the giant Arecibo telescope were received at the Green Bank telescope. These echoes allowed scientists from Cornell, the Smithsonian Institution and the Defence Science and Technology Organization in Australia to create images, offering the best view ever of the shadowed terrain at the lunar south pole.

Since the 1960s, theories have suggested that ice may exist deep inside impact craters in permanent shadow from the sun, where temperatures on the moon's surface do not exceed minus 280 degrees Fahrenheit (or minus 173 Centigrade), at the poles. The theory was bolstered in 1992 when Earth-based radar telescopes located "ice deposits" inside impact craters at the poles of the planet Mercury.

The Lunar Prospector orbiter discovered concentrations of hydrogen at the moon's poles. If this hydrogen were in the form of water molecules – still a subject of debate - then it would correspond to an average of 1 to 2 percent of water ice in the lunar soil in the shadowed terrain.

However, Earth-based radar measurements since the 1990s have consistently failed to detect ice deposits similar to those on Mercury. Since water ice would be a significant resource for any future lunar base, many of the instruments on NASA's 2008 Lunar Reconnaissance Orbiter/Lunar Crater Observation and Sensing Satellite mission seek to learn if water ice is present in permanently shadowed craters.

Even in the lunar summer at the south pole, the sun barely edges above the horizon, thus the bottom impact craters never see the sun. Because of the tilt of the moon's orbital plane relative to the Earth's equatorial plane, the Earth can rise much higher above the horizon at the lunar south pole than the sun, so telescopes on the Earth can "see" some of the shadowed area. However, since that area is permanently in shadow, only radar can image that terrain.

Blaine Friedlander | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>