Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The moon's south pole: Very high resolution, radar images find rocks abundant, but no ice sheets

20.10.2006
Using the highest resolution radar-signal images ever made of the moon – images from the National Science Foundation's (NSF) Arecibo Telescope in Arecibo, P.R., and the NSF's Robert C. Byrd Telescope in Green Bank, W.Va. – planetary astronomers have found no evidence for ice in craters at the lunar south pole. Cornell University, Smithsonian Institution and Australian scientists report the findings in the latest Nature (Oct. 19, 2006).

"These new results do not preclude ice being present as small grains in the lunar soil based on the Lunar Prospector's discovery of enhanced hydrogen concentrations at the lunar poles," said Donald Campbell, Cornell professor of astronomy and a principal investigator. "There is always the possibility that concentrated deposits exist in a few of the shadowed locations not visible to radars on Earth, but any current planning for landers or bases at the lunar poles should not count on this."

Echoes from radar signals transmitted to the moon from the giant Arecibo telescope were received at the Green Bank telescope. These echoes allowed scientists from Cornell, the Smithsonian Institution and the Defence Science and Technology Organization in Australia to create images, offering the best view ever of the shadowed terrain at the lunar south pole.

Since the 1960s, theories have suggested that ice may exist deep inside impact craters in permanent shadow from the sun, where temperatures on the moon's surface do not exceed minus 280 degrees Fahrenheit (or minus 173 Centigrade), at the poles. The theory was bolstered in 1992 when Earth-based radar telescopes located "ice deposits" inside impact craters at the poles of the planet Mercury.

The Lunar Prospector orbiter discovered concentrations of hydrogen at the moon's poles. If this hydrogen were in the form of water molecules – still a subject of debate - then it would correspond to an average of 1 to 2 percent of water ice in the lunar soil in the shadowed terrain.

However, Earth-based radar measurements since the 1990s have consistently failed to detect ice deposits similar to those on Mercury. Since water ice would be a significant resource for any future lunar base, many of the instruments on NASA's 2008 Lunar Reconnaissance Orbiter/Lunar Crater Observation and Sensing Satellite mission seek to learn if water ice is present in permanently shadowed craters.

Even in the lunar summer at the south pole, the sun barely edges above the horizon, thus the bottom impact craters never see the sun. Because of the tilt of the moon's orbital plane relative to the Earth's equatorial plane, the Earth can rise much higher above the horizon at the lunar south pole than the sun, so telescopes on the Earth can "see" some of the shadowed area. However, since that area is permanently in shadow, only radar can image that terrain.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

nachricht Integrated lasers on different surfaces
19.09.2017 | The Agency for Science, Technology and Research (A*STAR)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>