Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The moon's south pole: Very high resolution, radar images find rocks abundant, but no ice sheets

20.10.2006
Using the highest resolution radar-signal images ever made of the moon – images from the National Science Foundation's (NSF) Arecibo Telescope in Arecibo, P.R., and the NSF's Robert C. Byrd Telescope in Green Bank, W.Va. – planetary astronomers have found no evidence for ice in craters at the lunar south pole. Cornell University, Smithsonian Institution and Australian scientists report the findings in the latest Nature (Oct. 19, 2006).

"These new results do not preclude ice being present as small grains in the lunar soil based on the Lunar Prospector's discovery of enhanced hydrogen concentrations at the lunar poles," said Donald Campbell, Cornell professor of astronomy and a principal investigator. "There is always the possibility that concentrated deposits exist in a few of the shadowed locations not visible to radars on Earth, but any current planning for landers or bases at the lunar poles should not count on this."

Echoes from radar signals transmitted to the moon from the giant Arecibo telescope were received at the Green Bank telescope. These echoes allowed scientists from Cornell, the Smithsonian Institution and the Defence Science and Technology Organization in Australia to create images, offering the best view ever of the shadowed terrain at the lunar south pole.

Since the 1960s, theories have suggested that ice may exist deep inside impact craters in permanent shadow from the sun, where temperatures on the moon's surface do not exceed minus 280 degrees Fahrenheit (or minus 173 Centigrade), at the poles. The theory was bolstered in 1992 when Earth-based radar telescopes located "ice deposits" inside impact craters at the poles of the planet Mercury.

The Lunar Prospector orbiter discovered concentrations of hydrogen at the moon's poles. If this hydrogen were in the form of water molecules – still a subject of debate - then it would correspond to an average of 1 to 2 percent of water ice in the lunar soil in the shadowed terrain.

However, Earth-based radar measurements since the 1990s have consistently failed to detect ice deposits similar to those on Mercury. Since water ice would be a significant resource for any future lunar base, many of the instruments on NASA's 2008 Lunar Reconnaissance Orbiter/Lunar Crater Observation and Sensing Satellite mission seek to learn if water ice is present in permanently shadowed craters.

Even in the lunar summer at the south pole, the sun barely edges above the horizon, thus the bottom impact craters never see the sun. Because of the tilt of the moon's orbital plane relative to the Earth's equatorial plane, the Earth can rise much higher above the horizon at the lunar south pole than the sun, so telescopes on the Earth can "see" some of the shadowed area. However, since that area is permanently in shadow, only radar can image that terrain.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>