Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean fusion energy: HiPER is on the roadmap

20.10.2006
The roadmap outlining opportunities for European science was published on Thursday 19 October.

The result of two years intensive work involving over 1000 top-level scientists, the European Strategy Forum on Research Infrastructures (ESFRI) roadmap lists 35 opportunities for major science facilities over the next 20 years.

The HiPER laser project is a key opportunity being sponsored by CCLRC within this roadmap. Its purpose is to demonstrate a high technology solution for a long-term supply of environmentally clean energy.

The European High Power laser Energy Research facility, HiPER, will be designed to investigate the newest concept for efficient generation of power from fusion – the power of the Sun. A demonstration that energy can be produced from laser driven fusion is already due in the period 2010-2012, initially in the USA and subsequently in France. HiPER has been designed to move from this scientific proof of concept to a point where a demonstration commercial power plant is feasible, using a new technique known as ‘fast ignition’.

A consortium of over 50 senior laser and plasma scientists from nine countries have worked over the past two years to prepare the conceptual design of HiPER. The consortium will now direct their efforts to preparing the case for obtaining preparatory design funding as part of the European Commission’s response to the ESFRI roadmap. The design stage is anticipated to last three years, preparing the case for construction of this €800M facility. Whilst the future location is yet to be determined, the UK is a potential host, as part of a wider drive to take a leading position in high profile science with strong economic impact.

Whilst the pursuit of a future clean energy source is the principal goal of HiPER, the capability offered by a state-of-the-art laser has not escaped the wider scientific community. Proposals to make use of HiPER are being incorporated into the design, covering fields as diverse as extreme material science, astrophysics in the laboratory, miniaturised particle accelerators, and a wide array of fundamental physics studies.

Further details on the HiPER project can be found at http://www.hiperlaser.eu
Further details on the ESFRI roadmap can be found at http://cordis.europa.eu/esfri/

Natalie Bealing | alfa
Further information:
http://www.cclrc.ac.uk
http://www.hiperlaser.eu
http://cordis.europa.eu/esfri/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>