Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clean fusion energy: HiPER is on the roadmap

The roadmap outlining opportunities for European science was published on Thursday 19 October.

The result of two years intensive work involving over 1000 top-level scientists, the European Strategy Forum on Research Infrastructures (ESFRI) roadmap lists 35 opportunities for major science facilities over the next 20 years.

The HiPER laser project is a key opportunity being sponsored by CCLRC within this roadmap. Its purpose is to demonstrate a high technology solution for a long-term supply of environmentally clean energy.

The European High Power laser Energy Research facility, HiPER, will be designed to investigate the newest concept for efficient generation of power from fusion – the power of the Sun. A demonstration that energy can be produced from laser driven fusion is already due in the period 2010-2012, initially in the USA and subsequently in France. HiPER has been designed to move from this scientific proof of concept to a point where a demonstration commercial power plant is feasible, using a new technique known as ‘fast ignition’.

A consortium of over 50 senior laser and plasma scientists from nine countries have worked over the past two years to prepare the conceptual design of HiPER. The consortium will now direct their efforts to preparing the case for obtaining preparatory design funding as part of the European Commission’s response to the ESFRI roadmap. The design stage is anticipated to last three years, preparing the case for construction of this €800M facility. Whilst the future location is yet to be determined, the UK is a potential host, as part of a wider drive to take a leading position in high profile science with strong economic impact.

Whilst the pursuit of a future clean energy source is the principal goal of HiPER, the capability offered by a state-of-the-art laser has not escaped the wider scientific community. Proposals to make use of HiPER are being incorporated into the design, covering fields as diverse as extreme material science, astrophysics in the laboratory, miniaturised particle accelerators, and a wide array of fundamental physics studies.

Further details on the HiPER project can be found at
Further details on the ESFRI roadmap can be found at

Natalie Bealing | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>