Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Star, the Dwarf and the Planet

20.10.2006
First Directly Imaged Brown Dwarf Companion to an Exoplanet Host Star

Astronomers have detected a new faint companion to the star HD 3651, already known to host a planet. This companion, a brown dwarf, is the faintest known companion of an exoplanet host star imaged directly and one of the faintest T dwarfs detected in the Solar neighbourhood so far. The detection yields important information on the conditions under which planets form.

"Such a system is an interesting example that might prove that planet and brown dwarf can form around the same star", said Markus Mugrauer, lead author of the paper presenting the discovery.

HD 3651 is a star slightly less massive than the Sun, located 36 light-years away in the constellation Pisces (the "Fish"). For several years, it has been known to harbour a planet less massive than Saturn, sitting closer to its parent star than Mercury is from the Sun: the planet accomplishes a full orbit in 62 days.

Mugrauer and his colleagues first spotted the faint companion in 2003 on images from the 3.8-m United Kingdom Infrared Telescope (UKIRT) in Hawaii. Observations in 2004 and 2006 using ESO's 3.6 m New Technology Telescope (NTT) at La Silla provided the crucial confirmation that the speck of light is not a spurious background star, but indeed a true companion. The newly found companion, HD 3651B, is 16 times further away from HD 3651 than Neptune is from the Sun.

HD 3651B is the dimmest directly imaged companion of an exoplanet host star. Furthermore, as it is not detected on the photographic plates of the Palomar All Sky Survey, the companion must be even fainter in the visible spectral range than in the infrared, meaning it is a very cool low-mass sub-stellar object. Comparing its characteristics with theoretical models, the astronomers infer that the object has a mass between 20 and 60 Jupiter masses, and a temperature between 500 and 600 degrees Celsius. It is thus ten times colder and 300 000 less luminous than the Sun. These properties place it in the category of cool T-type brown dwarfs.

"Due to their faintness even in the infrared, these cool T dwarfs are very difficult to find", said Mugrauer. "Only two other brown dwarfs with similar brightness are presently known. Their study will provide important insights into the atmospheric properties of cool sub-stellar objects."

More than 170 stars are currently known to host exoplanets. In some cases, these stars were also found to have one or several stellar companions, showing that planet formation can also take place in a dynamically more complex environment than our own Solar System where planet formation occurred around an isolated single star.

In 2001, Mugrauer and his colleagues started an observational programme to find out whether exoplanet host stars are single or married. In this programme, known exoplanet host stars are systematically imaged at two different epochs, at least several months apart. True companions can be distinguished from coincidental background objects as only they move together with the stars over time. With this effective search strategy several new companions of exoplanet host stars have been detected. Most of the detected companions are low-mass stars in the same evolutionary state as the Sun. In two cases, however, the astronomers found the companions to be white dwarfs, that is, stars at the end of their life. These intriguing systems bear evidence that planets can even survive the troubled last moments in the life of a nearby star.

The planet host star HD 3651 is thus surrounded by two sub-stellar objects. The planet, HD 3651b, is very close, while the newly found brown dwarf companion revolves around the star 1500 times farther away than the planet. This system is the first imaged example that planets and brown dwarfs can form around the same star.

More information

These results were first presented in August at the IAU General Assembly in Prague and are in press in the Monthly Notices of the Royal Astronomical Society (Mugrauer et al., astro-ph/0608484). The discovery was later confirmed by another team, using the Spitzer space telescope (Luhman et al., astro-ph/0609464). The spectral classification was confirmed by additional follow-up spectroscopy of the companion (Burgasser, astro-ph/0609556).

The team comprises Markus Mugrauer and Ralph Neuhäuser (Astrophysical Institute and University observatory of the Friedrich-Schiller University of Jena, Germany), Andreas Seifahrt (ESO), and Tsevi Mazeh (Tel Aviv University, Israel).

Henri Boffin | alfa
Further information:
http://www.eso.org
http://www.astro.uni-jena.de
http://www.eso.org/outreach/press-rel/pr-2006/pr-39-06.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>