Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Find could lead to computers being made from one-atom-thick sheet of carbon

20.10.2006
Professor scoops top prize for remarkable scientific discovery

A University of Manchester researcher, who led a team that discovered an amazing new type of ultra-thin material, has been given a prestigious prize for his ‘remarkable contribution’ to science.

Professor Andre Geim of the School of Physics and Astronomy has been awarded the 2007 Mott Medal and Prize by the Institute of Physics for his ground-breaking work.

The research of Professor Geim, Dr Kostya Novoselov and colleagues at the University led to the discovery of a new class of materials called two-dimensional atomic crystals back in 2004.

But it is graphene that has caused a real stir in the world of science.

Graphene is a single layer of carbon atoms densely packed in a honeycomb crystal lattice. The material is made from splitting graphite apart into individual atomic planes, through a process similar to tracing with a pencil. The resulting atomic sheet is unexpectedly stable, highly flexible and strong, and very conductive.

One of many unique properties of graphene is that its electrons mimic particles moving with the speed of light, which presents an easy way for scientists to study relativistic phenomena.

In November 2005, a team of British, Russian and Dutch scientists led by Professor Geim, used graphene to test Einstein’s theory of relativity in a table-top experiment. Until then, it was only possible to test the famous theory by building expensive machinery or by studying stars in distant galaxies.

The team’s discovery has the potential to speed up future discoveries and save billions of pounds, now that tests can be set up using graphene and relatively inexpensive laboratory equipment.

Professor Geim and his team have also found that graphene exhibits a remarkable quality, which means that electrons can travel without any scattering over submicron distances. This is important for making very fast switching transistors.

In the quest to make the computer chip more powerful and faster, engineers are striving to produce smaller transistors, shortening the paths electrons have to travel to switch the devices on and off.

Ultimately, scientists envisage transistors made from a single molecule, and Professor Geim’s work has brought that vision ever nearer. In the future, it could lead to a computer being carved entirely out of a single sheet of graphene.

"It is certainly nice and somewhat unexpected to be acknowledged at such an early stage,” said Professor Geim. “Although it was found only two years ago, graphene has proved itself as a truly remarkable material, with a wealth of new physics coming out.

“It is too early to speak about real applications. However, all the indications are that graphene will be not just another new material but will find a multitude of applications so that everyone might eventually be influenced by this discovery.”

Professor John Durell, Head of the School of Physics and Astronomy said: “We are delighted that the outstanding research work of Andre Geim and his team has been recognised by the award of the Mott Medal and Prize by the Institute of Physics.

“The discovery of graphene has led to the creation of a new and exciting ‘laboratory’ for the study of fundamental science. Future development of production techniques could lead to applications with the potential to revolutionise electronic devices."

The Institute of Physics said its 2007 awards honour physicists who have made remarkable contributions to science.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>