Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Find could lead to computers being made from one-atom-thick sheet of carbon

20.10.2006
Professor scoops top prize for remarkable scientific discovery

A University of Manchester researcher, who led a team that discovered an amazing new type of ultra-thin material, has been given a prestigious prize for his ‘remarkable contribution’ to science.

Professor Andre Geim of the School of Physics and Astronomy has been awarded the 2007 Mott Medal and Prize by the Institute of Physics for his ground-breaking work.

The research of Professor Geim, Dr Kostya Novoselov and colleagues at the University led to the discovery of a new class of materials called two-dimensional atomic crystals back in 2004.

But it is graphene that has caused a real stir in the world of science.

Graphene is a single layer of carbon atoms densely packed in a honeycomb crystal lattice. The material is made from splitting graphite apart into individual atomic planes, through a process similar to tracing with a pencil. The resulting atomic sheet is unexpectedly stable, highly flexible and strong, and very conductive.

One of many unique properties of graphene is that its electrons mimic particles moving with the speed of light, which presents an easy way for scientists to study relativistic phenomena.

In November 2005, a team of British, Russian and Dutch scientists led by Professor Geim, used graphene to test Einstein’s theory of relativity in a table-top experiment. Until then, it was only possible to test the famous theory by building expensive machinery or by studying stars in distant galaxies.

The team’s discovery has the potential to speed up future discoveries and save billions of pounds, now that tests can be set up using graphene and relatively inexpensive laboratory equipment.

Professor Geim and his team have also found that graphene exhibits a remarkable quality, which means that electrons can travel without any scattering over submicron distances. This is important for making very fast switching transistors.

In the quest to make the computer chip more powerful and faster, engineers are striving to produce smaller transistors, shortening the paths electrons have to travel to switch the devices on and off.

Ultimately, scientists envisage transistors made from a single molecule, and Professor Geim’s work has brought that vision ever nearer. In the future, it could lead to a computer being carved entirely out of a single sheet of graphene.

"It is certainly nice and somewhat unexpected to be acknowledged at such an early stage,” said Professor Geim. “Although it was found only two years ago, graphene has proved itself as a truly remarkable material, with a wealth of new physics coming out.

“It is too early to speak about real applications. However, all the indications are that graphene will be not just another new material but will find a multitude of applications so that everyone might eventually be influenced by this discovery.”

Professor John Durell, Head of the School of Physics and Astronomy said: “We are delighted that the outstanding research work of Andre Geim and his team has been recognised by the award of the Mott Medal and Prize by the Institute of Physics.

“The discovery of graphene has led to the creation of a new and exciting ‘laboratory’ for the study of fundamental science. Future development of production techniques could lead to applications with the potential to revolutionise electronic devices."

The Institute of Physics said its 2007 awards honour physicists who have made remarkable contributions to science.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>