Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding Mars’s Cryptic Region

20.10.2006
Mars Express's OMEGA instrument has given planetary scientists outstanding new clues to help solve the mystery of Mars's so-called 'cryptic region'.

In the 1970s, orbiter missions around Mars revealed that during southern spring, large areas near Mars's south pole became much darker than the rest of the seasonal ice cap. How could this area be in the polar region and not be covered in bright ice? Intrigued, planetary scientists called the area the 'cryptic region' of the south seasonal cap.

The mystery deepened in the late 1990s when new observations showed that the temperature of the cryptic region was close to -135º Celsius. At that temperature, carbon dioxide ice had to be present. So, scientists developed the idea that a one-metre-thick slab of clear carbon dioxide ice covered the cryptic region, allowing the dark surface underneath to be seen.

However, the new observations from Mars Express's OMEGA instrument show that this interpretation cannot be correct. OMEGA measures the amount of visible and infrared radiation bouncing off the Martian surface. In so doing, it detects minerals and ices on the surface by charting the specific wavelengths of radiation they absorb.

Carbon dioxide ice (dry ice) absorbs infrared light strongly at specific wavelengths. "We see only weak absorptions in the infrared, which would indicate little carbon dioxide ice in the cryptic region," says Yves Langevin, Institut d'Astrophysique Spatiale, Orsay, France, who led the analysis of the OMEGA results.

The only way to reconcile the apparently conflicting observations is that there is indeed a thick slab of dry ice in this area, but its surface is so heavily covered by dust that few of the Sun’s rays make it to the deeper layers and back again.

How does the dust get on top of the slab? The answer could be provided by the mysterious markings that dot the cryptic region. Known as spots, 'spiders' and 'fans' depending upon their shapes, they were discovered in 1998–1999 by NASA's Mars Global Surveyor.

Planetary scientists believe they are caused by sunlight passing through the clear ice and heating the soil underneath. This causes pressure to build up in carbon dioxide bubbles below the ice until a geyser erupts throwing dust onto the surface, creating the spots and fans. In this model, the spiders result from erosion of the underlying surface by rapid gas flows below the ice. Langevin believes that this process could significantly contribute to the dust contamination of the icy surface, which OMEGA observed.

"In terms of physics, this is a straightforward process and would go a long way towards explaining our observations," says Langevin. However, there are major questions remaining, such as why are spiders, spots and fans only observed in a small fraction of the cryptic region? And why are areas not covered by spots and fans already relatively dark.

To clarify these points, Langevin must wait until the next southern spring equinox on Mars, in 2007. During the long winter, the Sun cannot be seen from the south pole and a pristine layer of ice should build up over the cryptic region. Langevin wants to observe the cryptic region close to the spring equinox, before the Sun has touched it and started the venting process. This will tell him when the dust geysers form and whether they are the ice slab’s only source of dust contamination.

So, whilst not as cryptic as it once was, Mars's south polar region still has a few mysteries left.

Agustin Chicarro | alfa
Further information:
http://www.esa.int/SPECIALS/Mars_Express/SEMMT0O7BTE_0.html

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>