Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Collaboration on Plasma Astrophysics between St John’s College Oxford and UCD

18.10.2006
A major collaborative research project that will address fundamental astrophysical questions has started between The Research Centre, St John’s College Oxford and UCD’s School of Mathematical Sciences.

Researchers led by Dr Katherine Blundell and Professor James Binney FRS in Oxford and Dr Peter Duffy in Dublin, will work towards understanding the role played by magnetised turbulence in the transport and acceleration of highly energetic particles in quasars and microquasars.

The theoretical and computational models developed in UCD and Oxford will then be compared with the data gleaned from the astronomical observations. The result will be numerical codes and visualisation software to simulate transport in the turbulent magnetic fields along relativistic jets and the resulting radiative transfer.

“The dynamics of jet formation clearly involve both gravity and electromagnetism, but the similarities between jets in systems with radically different scales suggests that the underlying physics is simple”, said Dr Blundell. “It is nevertheless far from understood. We propose to advance our understanding of that physics by combining developments in plasma physics with state-of-the-art radio and X-ray observations of both microquasars and radio galaxies.”

A unique feature of this project will be its interdisciplinary nature; drawing on the fields of observational astronomy, theoretical physics, computational science and developments in transport theory for terrestrial, nuclear fusion plasmas.

The UCD team will concentrate on theoretical work on the microphysics scale, using a combination of analytical calculations and large-scale simulations to explore the mechanisms by which charged particles are accelerated and then transported within radio sources.

The Oxford team will concentrate on observations and modelling on the macro-scale. Firstly, reducing and interpreting the data obtained through an observational programme using cutting-edge facilities to observe key sources at a range of frequencies in radio and X-rays. Secondly, combining the observable consequences of the microphysics studied in Dublin with models of the gross structure of the observed sources to produce predictions for what should be actually observed, at both radio wavelengths and X-ray frequencies.

Radio and X-ray astronomy are key diagnostics in tracing energetic particles that are being transported by background magnetic fields in the regions, known as lobes, surrounding such galaxies. “It is imperative that we advance our understanding of the relevance and prevalence of transport mechanisms of charged particles responsible for the radiation within these jets and lobes, and not just within a very narrow regime in parameter space”, said Dr Duffy.

Dr Blundell, an expert in radio astronomy and plasma physics, published papers in 2000-2001 showing that a mechanism is needed to transport particles quickly in these lobes over vast distances in a turbulent magnetic field. Already familiar with Dr Duffy’s work at the Max Planck Institute for Nuclear Physics in the mid-nineties, addressing the transport of very fast particles in turbulent magnetic fields, Dr Blundell established contact with him in UCD and the collaboration began.

Realising that the research was also applicable to a second class of object known as microquasars - scaled down versions of quasars found within our own Milky Way Galaxy, Dr Duffy and Dr Blundell co-authored three papers in the Astrophysical Journal and Plasma Physics and Controlled Fusion. In 2003-2004 they realised that a determined effort to solve these problems would require a large, inter-disciplinary team of researchers.

Dr Peter Duffy | alfa
Further information:
http://www.ucd.ie
http://mathsci.ucd.ie/cgi-bin/sms/frontpage.cgi

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>