Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF, UCLA astronomers first to measure night and day on extrasolar planet

16.10.2006
Observations hold promise for future studies of other extrasolar planets

University of Central Florida Astronomy professor Joseph Harrington and University of California at Los Angeles professor Brad M. Hansen and their team have made the first direct observation of distinct day and night temperatures on a planet orbiting another star.

Their published work appears in this week's Science Express, the online version of Science Magazine. The announcement was made today in Pasadena, Calif., at the annual meeting of the Division for Planetary Sciences of the American Astronomical Society. UCF will host the meeting in Orlando next year. The DPS includes 1,282 planetary scientists and astronomers, including 232 non-U.S. members.

The team used NASA's Spitzer Space Telescope to measure the infrared light emitted by the planet upsilon Andromedae b at five points around its orbit. The planet orbits a star located 263 trillion miles from Earth in the constellation Andromeda.

At each point during the observations, different portions of the planet's day and night hemispheres were in view, creating a rise-and-fall pattern in the light level that was synchronized with the planet's known orbit.

This information helps planetary scientists choose among several competing hypotheses regarding weather on so-called "hot Jupiter" planets, which orbit very close to their stars. Temperatures on these planets are about 3,000 degrees Fahrenheit, Harrington and Hansen calculated. Hot Jupiters have small enough orbits that the energy they absorb and reradiate from their host stars dominates their own internal energy losses.

"How they absorb and reradiate this energy is fundamental to understanding the behavior of their atmospheres," Harrington and Hansen said in their published article. "Studying planetary atmospheres under such exotic conditions puts terrestrial and solar-system meteorology into a universal context, which aids in our understanding of weather on all planets," Harrington added.

A number of models predict that strong winds transport energy from the day side to the night side. "But, our points are almost exactly synced up with the known orbit, which indicates almost immediate reradiation of energy, very little energy transport," Harrington said. "That's new, and very exciting. The temperature difference between day and night is also very strong, which is more evidence for immediate reradiation."

Why don't the models work for upsilon Andromedae b? "That's going to be a hot topic now," Harrington said.

Since the first planet orbiting another sun-like star was discovered in 1995, more than 200 such planets have been found, but scientists still cannot see the planets as separate images from their stars.

"In the past, we could only directly measure planets that happened to pass in front of and behind their stars from our point of view," Harrington said. "That only works for certain planets, and only at two points in the orbit. Our new method doesn't have those limitations, which opens up opportunities to observe more planets, and to get data all around their orbits. We need that to learn how their atmospheres work."

So when will someone discover an Earth-like planet around a sun-like star with a temperature that could support life as we know it? "It may not be that long of a wait," Harrington said. "NASA's Kepler mission should find several such planets, but technology is moving so fast, it could be that someone else does it first." The unmanned Kepler mission is scheduled for launch in October 2008.

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>