Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First detailed pictures of asteroid reveal bizarre system

16.10.2006
The first detailed images of a binary asteroid system reveal a bizarre world where the highest points on the surface are actually the lowest, and the two asteroids dance in each other's gravitational pull.

A binary asteroid is a system where two asteroids orbit around one another, like a mini Earth-moon system, said Daniel Scheeres, University of Michigan associate professor of aerospace engineering. The new results are scheduled to appear Oct. 12 in the journal Science in a pair of papers by Scheeres and Dr. Steven Ostro of the NASA/Caltech Jet Propulsion Laboratory.

The radar images of asteroid KW4 (the official full designation is 66391 1999 KW4) were obtained in May 2001, when the asteroid passed 4.8 million kilometers from Earth. Previously, KW4 was classified as a potentially hazardous asteroid (PHA) because of the proximity of the asteroid's orbit to Earth's orbit. The new observations show that there is no chance of KW4 hitting Earth within at least the next 1,000 years, Scheeres said.

"The KW4 results have profound consequences for ideas about mitigation of the asteroid collision hazard," Scheeres said.

The observations show that the larger object is spinning in its orbit so fast that it has been flattened into a kind of flying saucer shape, said Scheeres. Because of this, the mountainous region along the center of the asteroid actually forms the lowest part on the asteroid. In fact the asteroid is spinning so fast that the equatorial ridge is very close to lifting off the surface and spinning into space, he said.

Another interesting finding is that the two bodies in the asteroid system are orbiting so closely that they are caught in each other's gravitational pull.

"They are so close together that when one rotates it affects the other's movements," Scheeres said.

Based on the observations, the KW4 binary asteroid appears to have formed either from tidal disruption during a close pass by the Earth or from sunlight shining on it, so that it spins so fast that it eventually broke into two pieces. The odd shapes of asteroids cause them to sometimes spin faster and faster when illuminated by the sun, acting a bit like a solar sail, Scheeres said. This is called the YORP effect.

The recent findings also confirm that the asteroids are only floating piles of rubble held together by gravity and not a solid mass.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu
http://www.engin.umich.edu

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>