Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Event horizon dawns on desktop


A black hole: physicists hope to mimic this peculiar cosmic phenomenon in the lab.

Miniature physics phenomena could show hidden shades of space.

An event horizon is dawning in laboratories. Using frozen light, physicists hope to mimic this peculiar cosmic phenomenon and glimpse something like the belches of a black hole.

At the event horizon - the rim of a voracious black hole - dimensions as we know them disappear. To an observer on a spaceship, light and time appear to stand still. A floating spaceman would seem to slow and stop.

"It’s very difficult to do experiments at real black holes," points out physicist Ulf Leonhardt of the University of St Andrews in Scotland. So Leonhardt has worked out a way to build a simulated event horizon using a device that halts light in the lab1. "It would be almost table-top sized," he says.

The simulation could create a mock version of elusive ’Hawking radiation’. These weak electromagnetic waves are thought to occur when light reaches the event horizon, but they are masked from us by other emissions. "We might even be able to see it with the naked eye," says astronomer Fulvio Melia of the University of Arizona in Tucson.

No one has ever seen Hawking radiation, or knows what it will look like. The sum of the Universe’s light equals a pale turquoise, it was revealed last week Hawking radiation, too, "might have a particular tint", suggests Melia.

"If it’s true it’s tremendously interesting," says cosmologist Bernard Carr of Queen Mary and Westfield College, London. Imitation event horizons may help us to understand the quantum effects of gravity, and resolve conflicts between general relativity (the theory of the biggest bodies in the Universe) and quantum theory (the rules governing its tiniest constituents).

General relativity predicts that nothing can escape a black hole; quantum theory says that Hawking radiation does.

On the horizon

Black holes are formed when ancient stars collapse under their own gravity. They pack vast mass into a pinpoint of space. Their intense gravity sucks in anything that passes too close, including light; they even distort time.

As light waves hit the event horizon, they are thought to split into pairs of particles called ’quanta’; one falls into the black hole and one escapes as Hawking radiation. "A pile-up occurs," says Melia. Many light waves produce streams of quanta heading forwards and backwards.

Leonhardt’s idea is to copy this barrier, using the recent demonstration that certain materials can halt light2,3,4. Shining a laser beam into cold matter manipulates the rate that its constituent atoms absorb and re-emit waves of a second beam, causing this second beam to slow or stop.

The point where light stands still is analogous to an event horizon, says Leonhardt: quanta will be emitted. The simulation is a ’naked horizon’: a membranous event horizon without the black hole beyond.


  1. Leonhardt, U. A laboratory analogue of the event horizon using slow light in an atomic medium. Nature, 415, 406 - 409, (2002).
  2. Turukhin, A. V. et al. Observation of ultraslow and stored light pulses in a solid. Physical Review Letters, 88, 023602, (2002).
  3. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature, 409, 490 - 493, (2001).
  4. Phillips, D. F., Fleischhauer, A., Mair, A & Walsworth, R. L. Storage of Light in Atomic Vapor. Physical Review Letters, 86, 783 - 786, (2001).

HELEN PEARSON | © Nature News Service

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>