Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Event horizon dawns on desktop

24.01.2002


A black hole: physicists hope to mimic this peculiar cosmic phenomenon in the lab.
© SPL


Miniature physics phenomena could show hidden shades of space.

An event horizon is dawning in laboratories. Using frozen light, physicists hope to mimic this peculiar cosmic phenomenon and glimpse something like the belches of a black hole.

At the event horizon - the rim of a voracious black hole - dimensions as we know them disappear. To an observer on a spaceship, light and time appear to stand still. A floating spaceman would seem to slow and stop.



"It’s very difficult to do experiments at real black holes," points out physicist Ulf Leonhardt of the University of St Andrews in Scotland. So Leonhardt has worked out a way to build a simulated event horizon using a device that halts light in the lab1. "It would be almost table-top sized," he says.

The simulation could create a mock version of elusive ’Hawking radiation’. These weak electromagnetic waves are thought to occur when light reaches the event horizon, but they are masked from us by other emissions. "We might even be able to see it with the naked eye," says astronomer Fulvio Melia of the University of Arizona in Tucson.

No one has ever seen Hawking radiation, or knows what it will look like. The sum of the Universe’s light equals a pale turquoise, it was revealed last week Hawking radiation, too, "might have a particular tint", suggests Melia.

"If it’s true it’s tremendously interesting," says cosmologist Bernard Carr of Queen Mary and Westfield College, London. Imitation event horizons may help us to understand the quantum effects of gravity, and resolve conflicts between general relativity (the theory of the biggest bodies in the Universe) and quantum theory (the rules governing its tiniest constituents).

General relativity predicts that nothing can escape a black hole; quantum theory says that Hawking radiation does.

On the horizon

Black holes are formed when ancient stars collapse under their own gravity. They pack vast mass into a pinpoint of space. Their intense gravity sucks in anything that passes too close, including light; they even distort time.

As light waves hit the event horizon, they are thought to split into pairs of particles called ’quanta’; one falls into the black hole and one escapes as Hawking radiation. "A pile-up occurs," says Melia. Many light waves produce streams of quanta heading forwards and backwards.

Leonhardt’s idea is to copy this barrier, using the recent demonstration that certain materials can halt light2,3,4. Shining a laser beam into cold matter manipulates the rate that its constituent atoms absorb and re-emit waves of a second beam, causing this second beam to slow or stop.

The point where light stands still is analogous to an event horizon, says Leonhardt: quanta will be emitted. The simulation is a ’naked horizon’: a membranous event horizon without the black hole beyond.

References

  1. Leonhardt, U. A laboratory analogue of the event horizon using slow light in an atomic medium. Nature, 415, 406 - 409, (2002).
  2. Turukhin, A. V. et al. Observation of ultraslow and stored light pulses in a solid. Physical Review Letters, 88, 023602, (2002).
  3. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature, 409, 490 - 493, (2001).
  4. Phillips, D. F., Fleischhauer, A., Mair, A & Walsworth, R. L. Storage of Light in Atomic Vapor. Physical Review Letters, 86, 783 - 786, (2001).

HELEN PEARSON | © Nature News Service

More articles from Physics and Astronomy:

nachricht Nanotechnology for energy materials: Electrodes like leaf veins
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht First quantum photonic circuit with electrically driven light source
27.09.2016 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>