Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interstellar Weather Report: Day and Night Temps Measured on an Extrasolar Planet

13.10.2006
For the first time, astronomers have measured the day and night temperatures of a planet outside our solar system. The team,* which includes Sara Seager of Carnegie’s Department of Terrestrial Magnetism, revealed that a giant Jupiter-like gas planet orbiting very close to its star is blisteringly hot on one side, and frigid on the other.

The finding, made using NASA's Spitzer Space Telescope, represents the first time that any kind of variation has been seen across the surface of a planet outside our solar system. Previous studies of such planets—known to astronomers as “extrasolar” planets—have described whole-globe traits such as size and mass.

The results appear online today in Science Express, and will also be presented at the 38th meeting of the Division for Planetary Sciences of the American Astronomical Society in Pasadena, California.

“This observation completely changes our thinking about hot gas giant exoplanets,” Seager said. “Most astronomers expected them to be more uniformly heated, much like Jupiter. But this planet clearly has a hot side and a cool side.”

The gas giant planet, named Upsilon Andromeda b, is a so-called "hot-Jupiter" that circles closely around its scorching star every 4.6 days. Seager and her colleagues determined that the temperature variation between the planet’s light side and its dark side is about 2,550 degrees Fahrenheit.

"This planet has a giant hot spot in the hemisphere that faces the star," said lead author Joe Harrington of the University of Central Florida, Orlando. "The temperature difference between the day and night sides tells about how energy flows in the planet's atmosphere. Essentially, we're studying weather on an exotic planet."

The team believes that the planet is "tidally locked" to its star, meaning that the planet rotates slowly enough that the same side always faces its star—much like our tidally locked moon never reveals its "dark side" to the Earth. However, since the planet is made of gas, not rock, its outer atmosphere could move faster than its locked interior.

The extreme temperature difference between the two sides could mean that the atmosphere of Upsilon Andromeda b absorbs and re-radiates sunlight rapidly, allowing the circling gases to quickly cool off as they move from light side to dark side. Jupiter, on the other hand, maintains an even temperature all around.

"If you were moving across the planet from the night side to day side, the temperature jump would be equivalent to leaping into a volcano," said the project's principal investigator, Brad Hansen of the University of California, Los Angeles.

The team used Spitzer’s heat-seeking infrared eyes to periodically stare at the Upsilon Andromeda planetary system over a period of about five days. They found that the system's light dimmed and brightened in time with Upsilon Andromeda b's orbit; this change in observed light, or heat, is the result of the planet showing its different faces as it travels around the star. When the planet's sunlit side was in Earth's view, Spitzer detected more light from the system; when its dark side was facing us, Spitzer picked up less light. The technique takes advantage of the fact that planets stand out better relative to their stars when viewed in infrared light.

"This is a spectacular result," said Michael Werner, project scientist for Spitzer at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "When we designed Spitzer years ago, we did not anticipate that it would be revolutionizing extrasolar-planet science."

Upsilon Andromeda b was discovered in 1996 around the star Upsilon Andromeda, which is 40 light-years away and visible to the naked eye at night in the constellation Andromeda. The star is circled by two other known planets, both located farther out than Upsilon Andromeda b. The plane of this planetary system is tilted relative to our solar system, such that the planets are always in Earth's line of sight.

Dr. Sara Seager | EurekAlert!
Further information:
http://www.spitzer.caltech.edu/spitzer
http://www.carnegieinstitution.org

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>