Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini finds more rings highlighted by telltale small particles

13.10.2006
Images taken by NASA's Cassini spacecraft, looking in the direction of the Sun, have provided scientists fresh insights into the dynamic nature of the rings and, in particular, the creation of new rings made from tiny particles released from larger bodies.

Cassini findings being presented this week at the Division for Planetary Sciences Meeting of the American Astronomical Society held in Pasadena, Calif. include several new faint ring structures formed by processes acting on and within Saturn's moons and main rings.

A series of unique observations gathered in mid-September by NASA's Saturn-orbiting Cassini spacecraft as it drifted slowly through Saturn's shadow, allowed the entire ring system to be seen from a perspective that highlights microscopic ring particles: in many cases, particles only recently released into Saturn orbit. While observing from this locale, Cassini spotted, a single faint new ring, announced previously, in the shared orbit of the moons Janus and Epimetheus.

Scientists are now ecstatic to find even more rings. A second new diffuse but narrow ring is coincident with the orbit of the tiny moon Pallene, also discovered by Cassini's imaging cameras and only 4 kilometers (2.5 miles) across. Curiously, another similar-sized moon called Methone, discovered earlier in the mission in roughly the same region, does not seem to sport a ring.

A third diffuse ring--the brightest seen in the Cassini Division between the main A and B rings--was also spotted on Sept. 15 from Saturn's shadow.

Finally, a faint, very narrow, and seemingly discontinuous ringlet was also found between the broad bands of ring material in the Cassini Division. Though too small to be resolved during the September observations, it too was first seen in images taken in a geometry that enhances the visibility of small particles.

"Cassini's superior cameras and close orbits around Saturn allow us to spot fainter and narrower rings than Voyager was able to see", said Dr. Joseph Spitale, an imaging team associate working with team leader Dr. Carolyn Porco. "I wouldn't be surprised if we find more as time goes on."

All of these new rings are likely formed and maintained by impacts onto larger bodies, whether moons or large ring particles. These impacts blast material off their surfaces, creating diffuse rings in the same orbit as the parent body.

Saturn's diffuse rings are a subset that includes the E, G, and newly discovered rings. Scientists suspect that the G ring is created by impacts into bodies trapped in a remarkably bright arc in the ring. Unlike the other diffuse rings, however, Cassini observations have confirmed that the E ring is created by tiny ice particles spewing from surface jets on the geologically active moon Enceladus.

No matter how they are released, small grains are pushed about by sunlight and by electrical forces; hence their distribution tells much about the local space environment.

Imaging scientists have also noticed color variations across the diffuse rings that imply active processes sort the particles along the ring according to their sizes. Looking at the faint rings on one side of Saturn, the E ring appears to have a red core with a bluish halo, but the appearance is reversed on the right side--where there is a blue ring interior to a red ring.

According to Dr. Matt Hedman, an imaging team associate working at Cornell University in Ithaca, NY, this color variation may imply particles are being sorted by some process according to their sizes.

"These tiny grains are like spices--even a little bit of material can alter the ring's character," Hedman said.

Additionally, Cassini acquired a movie sequence and other images showing the narrowly confined G ring and its faint arc of material, which is likely held in place by a gravitational resonance with one of Saturn's moons.

Imaging Team member Joe Burns, also of Cornell University remarks, "We've been stunned by the rings' variability. Who would have thought, even a few years ago, that we'd see so many new features as the Cassini mission progressed?"

Preston Dyches | EurekAlert!
Further information:
http://www.ciclops.org

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>