Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini finds more rings highlighted by telltale small particles

13.10.2006
Images taken by NASA's Cassini spacecraft, looking in the direction of the Sun, have provided scientists fresh insights into the dynamic nature of the rings and, in particular, the creation of new rings made from tiny particles released from larger bodies.

Cassini findings being presented this week at the Division for Planetary Sciences Meeting of the American Astronomical Society held in Pasadena, Calif. include several new faint ring structures formed by processes acting on and within Saturn's moons and main rings.

A series of unique observations gathered in mid-September by NASA's Saturn-orbiting Cassini spacecraft as it drifted slowly through Saturn's shadow, allowed the entire ring system to be seen from a perspective that highlights microscopic ring particles: in many cases, particles only recently released into Saturn orbit. While observing from this locale, Cassini spotted, a single faint new ring, announced previously, in the shared orbit of the moons Janus and Epimetheus.

Scientists are now ecstatic to find even more rings. A second new diffuse but narrow ring is coincident with the orbit of the tiny moon Pallene, also discovered by Cassini's imaging cameras and only 4 kilometers (2.5 miles) across. Curiously, another similar-sized moon called Methone, discovered earlier in the mission in roughly the same region, does not seem to sport a ring.

A third diffuse ring--the brightest seen in the Cassini Division between the main A and B rings--was also spotted on Sept. 15 from Saturn's shadow.

Finally, a faint, very narrow, and seemingly discontinuous ringlet was also found between the broad bands of ring material in the Cassini Division. Though too small to be resolved during the September observations, it too was first seen in images taken in a geometry that enhances the visibility of small particles.

"Cassini's superior cameras and close orbits around Saturn allow us to spot fainter and narrower rings than Voyager was able to see", said Dr. Joseph Spitale, an imaging team associate working with team leader Dr. Carolyn Porco. "I wouldn't be surprised if we find more as time goes on."

All of these new rings are likely formed and maintained by impacts onto larger bodies, whether moons or large ring particles. These impacts blast material off their surfaces, creating diffuse rings in the same orbit as the parent body.

Saturn's diffuse rings are a subset that includes the E, G, and newly discovered rings. Scientists suspect that the G ring is created by impacts into bodies trapped in a remarkably bright arc in the ring. Unlike the other diffuse rings, however, Cassini observations have confirmed that the E ring is created by tiny ice particles spewing from surface jets on the geologically active moon Enceladus.

No matter how they are released, small grains are pushed about by sunlight and by electrical forces; hence their distribution tells much about the local space environment.

Imaging scientists have also noticed color variations across the diffuse rings that imply active processes sort the particles along the ring according to their sizes. Looking at the faint rings on one side of Saturn, the E ring appears to have a red core with a bluish halo, but the appearance is reversed on the right side--where there is a blue ring interior to a red ring.

According to Dr. Matt Hedman, an imaging team associate working at Cornell University in Ithaca, NY, this color variation may imply particles are being sorted by some process according to their sizes.

"These tiny grains are like spices--even a little bit of material can alter the ring's character," Hedman said.

Additionally, Cassini acquired a movie sequence and other images showing the narrowly confined G ring and its faint arc of material, which is likely held in place by a gravitational resonance with one of Saturn's moons.

Imaging Team member Joe Burns, also of Cornell University remarks, "We've been stunned by the rings' variability. Who would have thought, even a few years ago, that we'd see so many new features as the Cassini mission progressed?"

Preston Dyches | EurekAlert!
Further information:
http://www.ciclops.org

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>