Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Saturn's rings show evidence of a modern-day collision

Scientists on NASA's Cassini mission have spied a new, continuously changing feature that provides circumstantial evidence that a comet or asteroid recently collided with Saturn's innermost ring, the faint D ring.

Imaging scientists see a structure in the outer part of the D-ring that looks like a series of bright ringlets with a regularly spaced interval of about 30 kilometers (19 miles). An observation made by NASA's Hubble Space Telescope in 1995 also saw a periodic structure in the outer D ring, but its interval was then 60 kilometers (37 miles). Thus, unlike many features in the ring system which have not changed over the last few decades, the interval of this pattern has been decreasing over time.

These findings are being presented today at the Division for Planetary Sciences Meeting of the American Astronomical Society held in Pasadena, Calif. Images are available at,, and

"This structure in the D ring reminds us that Saturn's rings are not eternal, but instead are active, dynamical systems, which can change and evolve," said faint ring specialist, Dr. Matt Hedman, Cassini imaging team associate at Cornell University, Ithaca, N.Y.

When Cassini researchers viewed the D ring along a line of sight nearly parallel to the ringplane, they observed a pattern of brightness reversals: a part of the ring that appears bright on the far side of the rings appeared dark on the near side of the rings, and vice versa.

This phenomenon would occur if the region contains a sheet of fine material that is vertically corrugated, like a tin roof. In this case, variations in brightness would correspond to changing slopes in the rippled ring material.

Both the changes over time and the "corrugated" structure of this region could be explained by a collision of a comet or meteoroid into the D ring, which then kicked out a cloud of fine particles. This cloud might have inherited some of the tilt of the colliding object's path as it slammed into the rings. An alternate explanation could be that the object might have struck an already inclined moonlet, shattering it to bits and leaving its debris in an inclined orbit.

In either case, the researchers speculate the aftermath of such a collision would be a ring slightly tilted relative to Saturn's equatorial plane. Over time, as the inclined orbits of the ring particles evolve, this flat sheet of material would become a corrugated spiral that winds up like a spring over time, which is what was observed.

Based on observations between 1995 and 2006, scientists reconstructed a timeline and estimated that the collision occurred in 1984.

Preston Dyches | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>