Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World astronomers unite to harness hawaiian super-telescope

10.10.2006
Astronomers from several major research institutions around the world, including three in the UK, have signed an agreement to exploit a revolutionary new survey telescope sited in Hawaii which is expected to discover billions of new stars, galaxies and solar system objects, and to identify potential ‘killer asteroids’ that threaten the Earth.

Leading UK astronomers based at Durham University, Queen’s University Belfast and the University of Edinburgh have now joined a select group of US and German institutions to exploit an advanced new telescope, Pan-STARRS. Sited on the Hawaiian island of Maui, one of the world's prime astronomical sites, it is equipped with the world's largest digital camera.

While monitoring the sky in the hunt for asteroids that might be heading our way, Pan-STARRS will also build up the most detailed image yet of the universe around us. This will enable astronomers to investigate small solar system objects and search for exploding stars (supernovae), to produce 3-dimensional maps of galaxies and dark matter, to measure the properties of the dark energy and to investigate how galaxies have evolved over half the age of the universe.

Scientists' perception of the cosmos has fundamentally changed in the past few years. Novel technologies have led to a swathe of exciting discoveries, from new planets orbiting nearby stars to the mysterious dark energy that is causing our universe to expand at an ever accelerating rate. The cutting-edge imaging capability of Pan-STARRS will open up a new window onto these fundamental problems.

Cosmologist and Director of Durham's Institute for Computational Cosmology, Professor Carlos Frenk said: “Pan-STARRS is a truly innovative concept that will enable us to tackle some of the outstanding questions in science today, from the threat of killer asteroids to the origin of galaxies and the identity of the dark matter and the dark energy. New results and insights are inevitable.”

Professor Alan Fitzsimmons of Queen’s University shares Professor Frenk’s enthusiasm. He said: “We know very little about asteroids less than 1 km in size. Yet, they hit our Earth much more frequently than their larger cousins. Pan-STARRS has been brilliantly designed to find these objects, and will allow astronomers around the world to understand the risk posed by them.”

John Peacock, Cosmology Professor at Edinburgh University added: “Pan-STARRS will be an amazing tool for studying the make-up of the universe. It will let us measure the properties of dark matter and dark energy in many different ways, more precisely than ever before. It’s a privilege to join such a great project, and we’re all very excited at what lies ahead”.

Over the next three and half years more than 30 of the world’s leading scientists and their students will be committed to analysing the unprecedented flood of data, discovering asteroids and comets, mapping the cosmos and getting closer to the origins of our universe.

The international consortium includes Durham, Edinburgh and Queen’s Universities in the UK, the Max-Planck-Institutes for Astronomy and Extraterrestrial Physics in Germany, and Harvard University, Johns Hopkins University and Las Cumbres Observatory in the USA. The full consortium will contribute about $10 million dollars (5 million pounds) to cover the cost of operating the telescope in Hawaii, which was constructed at a cost of about $40 million dollars (£20 million pounds). Funding for the UK participants is provided by their universities and by the Ogden Trust.

Professor Carlos Frenk | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>