Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World astronomers unite to harness hawaiian super-telescope

10.10.2006
Astronomers from several major research institutions around the world, including three in the UK, have signed an agreement to exploit a revolutionary new survey telescope sited in Hawaii which is expected to discover billions of new stars, galaxies and solar system objects, and to identify potential ‘killer asteroids’ that threaten the Earth.

Leading UK astronomers based at Durham University, Queen’s University Belfast and the University of Edinburgh have now joined a select group of US and German institutions to exploit an advanced new telescope, Pan-STARRS. Sited on the Hawaiian island of Maui, one of the world's prime astronomical sites, it is equipped with the world's largest digital camera.

While monitoring the sky in the hunt for asteroids that might be heading our way, Pan-STARRS will also build up the most detailed image yet of the universe around us. This will enable astronomers to investigate small solar system objects and search for exploding stars (supernovae), to produce 3-dimensional maps of galaxies and dark matter, to measure the properties of the dark energy and to investigate how galaxies have evolved over half the age of the universe.

Scientists' perception of the cosmos has fundamentally changed in the past few years. Novel technologies have led to a swathe of exciting discoveries, from new planets orbiting nearby stars to the mysterious dark energy that is causing our universe to expand at an ever accelerating rate. The cutting-edge imaging capability of Pan-STARRS will open up a new window onto these fundamental problems.

Cosmologist and Director of Durham's Institute for Computational Cosmology, Professor Carlos Frenk said: “Pan-STARRS is a truly innovative concept that will enable us to tackle some of the outstanding questions in science today, from the threat of killer asteroids to the origin of galaxies and the identity of the dark matter and the dark energy. New results and insights are inevitable.”

Professor Alan Fitzsimmons of Queen’s University shares Professor Frenk’s enthusiasm. He said: “We know very little about asteroids less than 1 km in size. Yet, they hit our Earth much more frequently than their larger cousins. Pan-STARRS has been brilliantly designed to find these objects, and will allow astronomers around the world to understand the risk posed by them.”

John Peacock, Cosmology Professor at Edinburgh University added: “Pan-STARRS will be an amazing tool for studying the make-up of the universe. It will let us measure the properties of dark matter and dark energy in many different ways, more precisely than ever before. It’s a privilege to join such a great project, and we’re all very excited at what lies ahead”.

Over the next three and half years more than 30 of the world’s leading scientists and their students will be committed to analysing the unprecedented flood of data, discovering asteroids and comets, mapping the cosmos and getting closer to the origins of our universe.

The international consortium includes Durham, Edinburgh and Queen’s Universities in the UK, the Max-Planck-Institutes for Astronomy and Extraterrestrial Physics in Germany, and Harvard University, Johns Hopkins University and Las Cumbres Observatory in the USA. The full consortium will contribute about $10 million dollars (5 million pounds) to cover the cost of operating the telescope in Hawaii, which was constructed at a cost of about $40 million dollars (£20 million pounds). Funding for the UK participants is provided by their universities and by the Ogden Trust.

Professor Carlos Frenk | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>