Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HiRise Camera On NASA Orbiter Gets Sectacular View of Rover At Victoria Crater

06.10.2006
With stunningly powerful vision, the HiRISE camera on NASA's Mars Reconnaissance Orbiter has taken a remarkable picture that shows the exploration rover Opportunity poised on the rim of Victoria crater on Mars.

The High Resolution Imaging Science Experiment (HiRISE) camera detailed the entire 800-meter (roughly half-mile) Victoria crater and the rover -- down to its rover tracks and shadows -- in a single high-resolution image taken Wednesday (Oct. 3).


Victoria Crater, October 3rd, 2006 as seen by the
High Resolution Imaging Science Experiment (HiRISE)

Alfred S. McEwen of the University of Arizona Lunar and Planetary Laboratory released portions of the image that show views of the rover and crater at a NASA press conference in Washington, D.C., today. McEwen is principal investigator for HiRISE, which is operated from UA's Lunar and Planetary Laboratory in Tucson.

"We're poised to have a fantastic mission, and we're not even at prime science mission yet," McEwen said at the NASA press briefing this morning. "This was our very first attempt to image 'off-nadir' (at an angle as opposed to straight down), and it worked fabulously well," McEwen added. "It's been an exciting week."

The HiRISE images for Victoria crater are available online at http://hiroc.lpl.arizona.edu/images/TRA/TRA_000873_1780/

Opportunity drove nine kilometers (more than five miles) to Victoria crater, an impact crater at Meridiani Planum, near Mars' equator. The HiRISE camera took its picture five days later, at 3:30 p.m. local Mars time, as the sun was about 30 degrees above the horizon, illuminating the scene from the west. The NASA orbiter was flying 297 kilometers (185.6 miles) above the planet's surface. The HiRise camera is able to resolve objects that are 89 centimeters (35 inches) across at that altitude.

The high resolution of the HiRISE image enabled Opportunity's mission planners on Wednesday (Oct.4) to identify specific rover-scale targets of interest as they planned that day's drive. It is a first in the exploration of Mars.

Opportunity has since driven north to the tip of the Cape Verde promontory, where the rover will take images of the crater interior.

HiRISE's stunning overview of Victoria crater shows a distinctive scalloped shape to its rim. This is formed by eroding crater wall material moving downhill. Layered sedimentary rocks are exposed along the inner wall of the crater, and boulders that have fallen from the crater wall are visible on the crater floor. A striking field of sand dunes covers much of the crater floor.

"The ground-truth we get from the rover images and measurements enables us to better interpret features we see elsewhere on Mars, including very rugged and dramatic terrains that we can't currently study on the ground," McEwen said.

"But stay tuned," McEwen said at the press conference. "If you think this HiRISE image is spectacular, just wait."

Images from the High Resolution Imaging Science Experiment and additional information about the Mars Reconnaissance Orbiter are available online at: http://www.nasa.gov/mro and http://HiRISE.lpl.arizona.edu

The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft. The HiRISE camera was built by Ball Aerospace Corporation and is operated by The University of Arizona.

Lori Stiles | University of Arizona
Further information:
http://www.nasa.gov/mro
http://hiroc.lpl.arizona.edu/images/TRA/TRA_000873_1780/

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>