Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HiRise Camera On NASA Orbiter Gets Sectacular View of Rover At Victoria Crater

06.10.2006
With stunningly powerful vision, the HiRISE camera on NASA's Mars Reconnaissance Orbiter has taken a remarkable picture that shows the exploration rover Opportunity poised on the rim of Victoria crater on Mars.

The High Resolution Imaging Science Experiment (HiRISE) camera detailed the entire 800-meter (roughly half-mile) Victoria crater and the rover -- down to its rover tracks and shadows -- in a single high-resolution image taken Wednesday (Oct. 3).


Victoria Crater, October 3rd, 2006 as seen by the
High Resolution Imaging Science Experiment (HiRISE)

Alfred S. McEwen of the University of Arizona Lunar and Planetary Laboratory released portions of the image that show views of the rover and crater at a NASA press conference in Washington, D.C., today. McEwen is principal investigator for HiRISE, which is operated from UA's Lunar and Planetary Laboratory in Tucson.

"We're poised to have a fantastic mission, and we're not even at prime science mission yet," McEwen said at the NASA press briefing this morning. "This was our very first attempt to image 'off-nadir' (at an angle as opposed to straight down), and it worked fabulously well," McEwen added. "It's been an exciting week."

The HiRISE images for Victoria crater are available online at http://hiroc.lpl.arizona.edu/images/TRA/TRA_000873_1780/

Opportunity drove nine kilometers (more than five miles) to Victoria crater, an impact crater at Meridiani Planum, near Mars' equator. The HiRISE camera took its picture five days later, at 3:30 p.m. local Mars time, as the sun was about 30 degrees above the horizon, illuminating the scene from the west. The NASA orbiter was flying 297 kilometers (185.6 miles) above the planet's surface. The HiRise camera is able to resolve objects that are 89 centimeters (35 inches) across at that altitude.

The high resolution of the HiRISE image enabled Opportunity's mission planners on Wednesday (Oct.4) to identify specific rover-scale targets of interest as they planned that day's drive. It is a first in the exploration of Mars.

Opportunity has since driven north to the tip of the Cape Verde promontory, where the rover will take images of the crater interior.

HiRISE's stunning overview of Victoria crater shows a distinctive scalloped shape to its rim. This is formed by eroding crater wall material moving downhill. Layered sedimentary rocks are exposed along the inner wall of the crater, and boulders that have fallen from the crater wall are visible on the crater floor. A striking field of sand dunes covers much of the crater floor.

"The ground-truth we get from the rover images and measurements enables us to better interpret features we see elsewhere on Mars, including very rugged and dramatic terrains that we can't currently study on the ground," McEwen said.

"But stay tuned," McEwen said at the press conference. "If you think this HiRISE image is spectacular, just wait."

Images from the High Resolution Imaging Science Experiment and additional information about the Mars Reconnaissance Orbiter are available online at: http://www.nasa.gov/mro and http://HiRISE.lpl.arizona.edu

The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft. The HiRISE camera was built by Ball Aerospace Corporation and is operated by The University of Arizona.

Lori Stiles | University of Arizona
Further information:
http://www.nasa.gov/mro
http://hiroc.lpl.arizona.edu/images/TRA/TRA_000873_1780/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>