Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers see inside a quasar for the first time

06.10.2006
For the first time, astronomers have looked inside quasars -- the brightest objects in the universe -- and have seen evidence of black holes.

The study lends further confirmation to what scientists have long suspected -- that quasars are made up of super-massive black holes and the super-heated disks of material that are spiraling into them.

The results of the Ohio State University-led project were reported Thursday at the meeting of the American Astronomical Society (AAS) High Energy Astrophysics Division in San Francisco.

"There are many models that try to describe what's happening inside a quasar, and before, none of them could be ruled out. Now some of them can," said Xinyu Dai, a postdoctoral researcher at Ohio State. "We can begin to make more precise models of quasars, and gain a more complete view of black holes."

Seen from Earth, quasars, or quasi-stellar objects, look like stars. They are extremely bright, which is why we can see them even though they are among the most distant objects in the universe. Astronomers puzzled over quasars for decades before deciding that they most likely contain super-massive black holes that formed billions of years ago.

Black holes cannot be directly observed, because they are so massive that even light cannot escape their gravity. The material that is falling into a black hole, on the other hand, glows brightly. In the case of quasars, the material shines across a broad range of energies, including visible light, radio waves, and X-rays.

Dai and Christopher Kochanek, professor of astronomy, and their colleagues studied the light emanating from two quasars.

Quasars are so far away that even in the most advanced telescopes, they look like a tiny pinpoint of light. The interior structures of the two quasars in this study only became visible when a galaxy happened to line up just right between them and the Earth, and magnified their light like a lens.

The astronomers likened the effect to being able to look at the quasars under a microscope.

Einstein predicted that massive objects in space can sometimes act like lenses, bending and magnifying light from objects that are behind them, as seen by an observer. The effect is called gravitational lensing, and it enables astronomers to study some objects in otherwise unattainable detail.

"Luckily for us, sometimes stars and galaxies act as very high-resolution telescopes," Kochanek said. "Now we're not just looking at a quasar, we're probing the very inside of a quasar and getting down to where the black hole is."

They were able to measure the size of the so-called accretion disk around the black hole inside each quasar.

In each, the disk surrounded a smaller area that was emitting X-rays, as if the disk material was being heated up as it fell into the black hole in the center.

That's what they expected to see, given current notions about quasars. But the inside view will help them begin to refine those notions, Dai said.

Key to the project was NASA's Chandra X-Ray Observatory, which allowed them to precisely measure the brightness of the X-ray emitting region of each quasar. They coupled those measurements to ones from optical telescopes which belong to the Small and Moderate Aperture Research Telescope System Consortium.

The astronomers studied the variability of both the X-rays and visible light coming from the quasars and compared those measurements to calculate the size of the accretion disk in each. They used a computer program that Kochanek created especially for such calculations, and ran it on a 48-processor computer cluster. Calculations for each quasar took about a week to complete.

The two quasars they studied are named RXJ1131-1231 and Q2237+0305, and there's nothing special about them, Kochanek said, except that they were both gravitationally lensed. He and his group are currently studying 20 such lensed quasars, and they'd like to eventually gather X-ray data on all of them.

This project is part of an ongoing collaboration between Ohio State and Penn State University. Coauthors on the AAS presentation included Nicholas Morgan of Ohio State, and George Chartas and Gordon Garmire of Penn State.

NASA funded this research. The computer cluster was provided by Cluster Ohio, an initiative of the Ohio Supercomputer Center (OSC), the Ohio Board of Regents, and the OSC Statewide Users Group.

Christopher Kochanek | EurekAlert!
Further information:
http://researchnews.osu.edu/archive/quassize.htm
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>