Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers see inside a quasar for the first time

06.10.2006
For the first time, astronomers have looked inside quasars -- the brightest objects in the universe -- and have seen evidence of black holes.

The study lends further confirmation to what scientists have long suspected -- that quasars are made up of super-massive black holes and the super-heated disks of material that are spiraling into them.

The results of the Ohio State University-led project were reported Thursday at the meeting of the American Astronomical Society (AAS) High Energy Astrophysics Division in San Francisco.

"There are many models that try to describe what's happening inside a quasar, and before, none of them could be ruled out. Now some of them can," said Xinyu Dai, a postdoctoral researcher at Ohio State. "We can begin to make more precise models of quasars, and gain a more complete view of black holes."

Seen from Earth, quasars, or quasi-stellar objects, look like stars. They are extremely bright, which is why we can see them even though they are among the most distant objects in the universe. Astronomers puzzled over quasars for decades before deciding that they most likely contain super-massive black holes that formed billions of years ago.

Black holes cannot be directly observed, because they are so massive that even light cannot escape their gravity. The material that is falling into a black hole, on the other hand, glows brightly. In the case of quasars, the material shines across a broad range of energies, including visible light, radio waves, and X-rays.

Dai and Christopher Kochanek, professor of astronomy, and their colleagues studied the light emanating from two quasars.

Quasars are so far away that even in the most advanced telescopes, they look like a tiny pinpoint of light. The interior structures of the two quasars in this study only became visible when a galaxy happened to line up just right between them and the Earth, and magnified their light like a lens.

The astronomers likened the effect to being able to look at the quasars under a microscope.

Einstein predicted that massive objects in space can sometimes act like lenses, bending and magnifying light from objects that are behind them, as seen by an observer. The effect is called gravitational lensing, and it enables astronomers to study some objects in otherwise unattainable detail.

"Luckily for us, sometimes stars and galaxies act as very high-resolution telescopes," Kochanek said. "Now we're not just looking at a quasar, we're probing the very inside of a quasar and getting down to where the black hole is."

They were able to measure the size of the so-called accretion disk around the black hole inside each quasar.

In each, the disk surrounded a smaller area that was emitting X-rays, as if the disk material was being heated up as it fell into the black hole in the center.

That's what they expected to see, given current notions about quasars. But the inside view will help them begin to refine those notions, Dai said.

Key to the project was NASA's Chandra X-Ray Observatory, which allowed them to precisely measure the brightness of the X-ray emitting region of each quasar. They coupled those measurements to ones from optical telescopes which belong to the Small and Moderate Aperture Research Telescope System Consortium.

The astronomers studied the variability of both the X-rays and visible light coming from the quasars and compared those measurements to calculate the size of the accretion disk in each. They used a computer program that Kochanek created especially for such calculations, and ran it on a 48-processor computer cluster. Calculations for each quasar took about a week to complete.

The two quasars they studied are named RXJ1131-1231 and Q2237+0305, and there's nothing special about them, Kochanek said, except that they were both gravitationally lensed. He and his group are currently studying 20 such lensed quasars, and they'd like to eventually gather X-ray data on all of them.

This project is part of an ongoing collaboration between Ohio State and Penn State University. Coauthors on the AAS presentation included Nicholas Morgan of Ohio State, and George Chartas and Gordon Garmire of Penn State.

NASA funded this research. The computer cluster was provided by Cluster Ohio, an initiative of the Ohio Supercomputer Center (OSC), the Ohio Board of Regents, and the OSC Statewide Users Group.

Christopher Kochanek | EurekAlert!
Further information:
http://researchnews.osu.edu/archive/quassize.htm
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>