Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Improved Magnetic-Semiconductor Sandwich

05.10.2006
Spin-based device works at room temperature

Researchers at Ohio University have created an improved magnetic semiconductor that solves a problem spintronics scientists have been investigating for years.

Unlike classic or vintage electronics that operate on electronic charges, spin-based electronics focuses on the spin of electrons to carry and store information. Researchers predict spintronics will revolutionize the electronics industry by making devices faster, improving storage capacity and reducing the amount of power needed to run them.

Spintronics technology has not been widely applied yet, however, because scientists have had difficulty controlling, manipulating and measuring the electrons.

In a paper published online today in Physical Review Letters, a team of Ohio University and Ohio State University scientists led by postdoctoral fellow Erdong Lu have created an effective interface between a semiconductor and ferromagnetic metal. The two-layer “sandwich” of gallium nitride (GaN) and manganese gallium (MnGa) nearly eliminates any intermixing of the two layers and allows the spin to be “tuned.”

“We found a way to grow the metal on the semiconductor. The crystalline match between the two materials was nearly perfect. The advantage of this finding is in the growth process. By adjusting the conditions of the growth, we can tune the spin,” said Arthur Smith, associate professor of physics and astronomy and director of Ohio University’s Nanoscale & Quantum Phenomena Institute.

Magnetization was controlled by monitoring a property of the growth called reconstruction. Through the monitoring process, researchers could predict the properties of the spin.

“It has to do with the ratio of manganese and gallium,” Smith said.

The researchers also found that this new magnetic-semiconductor bilayer will operate at room temperature. Other materials have only worked at very low temperatures, which makes them impractical for commercial applications.

The research was funded by the National Science Foundation.

The primary author on the paper is Erdong Lu; co-authors are Smith and David Ingram, also of Ohio University, and J.W. Knepper and F.Y. Yang of Ohio State University.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>