Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s not just cricket – actually it’s physics

05.10.2006
Ever wanted to face a Shane Warne spin delivery or smash a Glen McGrath speed bowl?

A new bowling simulator may enable you to do just that. The machine is the first of its kind to use physics, real cricket balls and novel speed and spin generating mechanisms to imitate realistic deliveries (e.g. spin, swing and pace) as generated by professional cricket players. Dr Andy West, the machine’s inventor at Loughborough University described it at an Institute of Physics conference, Physics and Engineering – Synergy for Success, today.

Dr West said: “By considering the physics of air flow around a ball and launch conditions we have made a robotic bowler that we can programme to mimic Warne, McGrath or the style of any other bowler. When we were designing the machine, we considered all the things that real players use, such as the orientation of the seam and the speed at which the ball is released to vary how a ball travels when it is bowled.”

“Real life bowlers can get tired or injured during extensive training periods so the machine is ideal for batsmen to practise with. The team coach can programme it to bowl whatever sequences of deliveries he wants. Alternatively, exactly the same ball can be bowled again and again (referred to as shot grooving) until cricketers become expert at hitting them.”

The trajectory of the ball from the bowling machine to the batsman is dependent on how the boundary air, the air next to the ball, moves around it and how it separates or moves away from the ball. There are two different types of air flow – laminar, which is smooth - and turbulent, which is rough. In laminar flow the boundary layer separates approximately halfway around the ball whereas in turbulent flow the separation is later.

The seam on a cricket ball “trips” the air flow into turbulence so there is rough air flow on one side of the ball and smooth air flow on the other. This creates an uneven air flow around the whole ball which causes a sideways drift. The size of the drift depends on the angle of the seam, the speed of the ball and the condition of the original air flow around the ball. It is essential therefore that the seam is aligned accurately to enable any machine to be able to generate this type of “swing” delivery.

Dr West continued: “Consideration of the physics of flight and the requirements of players and coaches has enabled us to make a very realistic bowling machine that will be great for professional cricketers to practise with. However our vision is that the machine is not just for the professional. The cricket emulator is part of a co-ordinated suite of sports simulation machines that have been or are currently under development at Loughborough covering sports such as golf, football, cycling, rowing and weight training.”

Helen MacBain | alfa
Further information:
http://www.iop.org
http://www.iop.org/Conferences/Forthcoming_Institute_Conferences/event_6090.html

More articles from Physics and Astronomy:

nachricht Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible
30.05.2017 | ICFO-The Institute of Photonic Sciences

nachricht New Method of Characterizing Graphene
30.05.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>