Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GIOVE-A laser ranging campaign successful

04.10.2006
Fourteen laser ranging stations participated in a campaign to track ESA’s GIOVE-A satellite during the spring and summer of 2006, providing invaluable data for the characterisation of the satellite’s on-board clock. The campaign was coordinated by the International Laser Ranging Service (ILRS) and the GIOVE Processing Centre at ESA-ESTEC.

GIOVE-A, developed by Surrey Satellite Technology Ltd (UK), was launched from Baikonur Cosmodrome on 28 December 2005 and placed into a medium Earth orbit with an altitude of 23 260 km. Carrying a payload consisting of rubidium clocks, signal generation units and a phase array of individual L-band antenna elements, GIOVE-A started broadcasting Galileo signals on 12 January, securing the frequencies allocated by the International Telecommunications Union for the Galileo system.

The performance characterisation of the on-board clocks is significantly enhanced by the use of Satellite Laser Ranging (SLR), a high precision technique for orbit determination that is independent of the navigation signal generation. The technique is based on a global network of stations that measure the round flight time of ultra short laser pulses to satellites equipped with Laser Retro Reflectors (LRR). Laser ranging provides instantaneous range measurements of millimetre-level precision which can be used to derive accurate orbit data.

GIOVE-A is equipped with a LRR having 76 corner cubes, manufactured by IPIE of Russia, which provides a return energy 40% higher than GPS reflectors. The use of SLR data allows a more robust orbit determination, and thus a more accurate clock characterisation. In addition, certain satellite properties relevant to navigation, such as the offset between the centre of mass and the centre of the navigational phase centre, can be verified and calibrated.

The International Laser Ranging Service (ILRS) has agreed to support the GIOVE-A mission by providing SLR data during several tracking campaigns coordinated with the GIOVE Processing Centre at ESA-ESTEC.

The first of these tracking campaigns took place between 22 May and 24 July 2006, with the participation of 14 SLR stations, distributed globally. In addition to confirming the good health of the LRR on GIOVE-A after launch, the SLR data has been essential for a health check and a preliminary performance characterisation of the on-board rubidium clocks.

With GIOVE-A, ESA is validating the critical new technologies needed for the Galileo system and preparing for the next phase of In-Orbit Validation (IOV). For this next step, four satellites will be launched. On completion of IOV, the four satellites will become the initial components of the operational Galileo constellation.

Galileo is a joint initiative of the European Commission and the European Space Agency. It is the first satellite positioning and navigation system specifically designed for civilian purposes and will offer state-of-the-art services with outstanding performance and guaranteed accuracy, integrity, continuity and availability.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEM8QOKKKSE_index_0.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>