Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest 3D Map of Galaxies

04.10.2006
A team of American, Australian and British astronomers has released maps from the largest full-sky, three-dimensional survey of galaxies ever conducted.

Their detailed maps show the ‘local’ cosmos out to a distance of 600 million light years, identifying all the major superclusters of galaxies and voids. They also provide important clues regarding the distribution of the mysterious ‘dark matter’ and ‘dark energy’ which are thought to account for up to 96% of the apparent mass of the Universe.


The reconstructed density fields in the supergalactic coordinates (SGX, SGY). In this coordinate system, the equator is aligned with the Virgo Cluster, Great Attractor and Perseus-Pisces superclusters. The main overdensities are Hydra-Centaurus (centre-left), Perseus-Pisces (centre-right), Shapley Concentration (upper left), Coma (upper-middle).

Within this vast volume, the most massive galaxy supercluster is 400 million light years away. It was named after its identifier, the American astronomer Harlow Shapley. The Shapley supercluster is so big that it takes light at least 20 million years to travel from its one end to the other. However, Shapley is not the only massive supercluster in our vicinity.

The Great Attractor supercluster, which is three times closer than Shapley, plays a bigger role in the motion of our Galaxy. According to the team, our Milky Way galaxy, its sister galaxy Andromeda and other neighbouring galaxies are moving towards the Great Attractor at an amazing speed of about a million miles per hour. The researchers also established that the Great Attractor is indeed an isolated supercluster and is not part of Shapley.

The new maps are based on the observation that, as the Universe expands, the colours of galaxies change as their emitted light waves are stretched or “redshifted”. By measuring the extent of this redshift, astronomers are able to calculate approximate distances to galaxies.

The new survey, known as the 2MASS Redshift Survey (2MRS), has combined two dimensional positions and colours from the Two Micron All Sky Survey (2MASS), with redshifts of 25,000 galaxies over most of the sky. These redshifts were either measured specifically for the 2MRS or they were obtained from an even deeper survey of the southern sky, the 6dF Galaxy Redshift Survey (6dFGS).

The great advantage of 2MASS is that it detects light in the near-infrared, at wavelengths slightly longer than the visible light. The near-infrared waves are one of the few types of radiation that can penetrate gases and dust and that can be detected on the Earth’s surface. Although the 2MRS does not probe as deeply into space as other recent narrow-angle surveys, it covers the entire sky.

Galaxy redshift surveys are only able to detect luminous matter. This luminous matter accounts for no more than a small fraction of the total matter in the Universe. The remainder is composed of a mysterious substance called ‘dark matter’ and an even more elusive component named ‘dark energy’.

“We need to map the distribution of dark matter rather than luminous matter in order to understand large-scale motions in our Universe,” explained Dr. Pirin Erdogdu (Nottingham University), lead author of the paper. “Fortunately, on large scales, dark matter is distributed almost the same way as luminous matter, so we can use one to help unravel the other.”

Her collaborator, Dr. Thomas Jarrett from Caltech, added, “The other advantage of observing in the near-infrared wavelength is the fact that it traces directly the luminous matter, and thus the dark matter, as well.”

“Our nearly two decade effort has produced the absolute best ever map of the nearby Universe,” said Prof. John Huchra of Harvard University. “With this we hope to elucidate the nature and disposition of dark matter and understand much, much more about our cosmological model and about galaxies themselves.”

In order to map the dark matter probed by the survey, the team used a novel technique borrowed from image processing. The method was partly developed by Prof. Ofer Lahav, a co-author of the paper and head of the astrophysics group at University College London. The technique utilizes the relationship between galaxy velocities and the total distribution of mass.

“It is like reconstructing the true street map of London just from a satellite image of London taken at night. The street lights, like the luminous galaxies, act as beacons of the underlying roads,” said Prof. Lahav.

"This extraordinarily detailed map of the Milky Way’s cosmic neighbourhood provides a benchmark against which theories for the formation of structure in the Universe can be tested,” commented Prof. Matthew Colless, director of the Anglo-Australian Observatory and leader of the 6dF Galaxy Survey.

“In the near future, the predicted motions derived from this map will be confronted with direct measurements of galaxies’ velocities obtained by the 6dF Galaxy Survey, providing a new and stringent test of cosmological models.”

Dr. Pirin Erdogdu | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>