Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LANL/NIST team sends quantum encryption 'keys' over record distances

28.09.2006
Using an innovative sensor for detecting single photons, the smallest particles of light, scientists from Los Alamos National Laboratory (LANL), the National Institute of Standards and Technology (NIST) and Albion College (Albion, Mich.) have set two significant distance records for distributing "keys" (or codes) for quantum encryption, the most secure method known for protecting the privacy of information.

As described in the September issue of New Journal of Physics,* the team generated and transmitted secret quantum keys over 184.6 kilometers (km) of fiber-optic cable, the longest distance ever recorded for quantum key distribution (QKD). The previous record was 122 km. Secret quantum key is a code for encrypting data that not only have been transmitted and detected successfully, but also processed to correct for errors and enhance privacy, steps considered essential for practical applications. The keys are then used to encrypt ordinary digital data for transmission over conventional communications channels.

"This work extends the potential range of one link of a quantum communications system," says Sae Woo Nam, the NIST physicist who designed the photon detectors. "Experiments like this are interesting because they establish new thresholds for the distance between repeaters," or devices that re-send and boost fading signals between links in far-reaching networks.

LANL and NIST are among a number of laboratories and companies around the world developing QKD systems, which are expected to provide the next generation of data security. A variety of threats as well as advances in code-breaking create continuous pressure to improve encryption systems, which have been used widely for many years to ensure the security of electronic financial transactions, military operations, and commercially valuable or confidential data.

QKD systems produce keys using single photons transmitted with their electric fields in different orientations to represent the values 1 and 0 used in digital communications. Under the laws of quantum physics, nature's instruction book for the smallest particles of matter and light, a photon cannot be intercepted without changing its quantum state (including orientation), changes that can be detected to reveal eavesdropping. Thus, unlike today's best encryption methods, which depend on mathematical complexity and could be broken with sufficient time and computing power, quantum encryption is "unbreakable"--as long as the QKD system is properly designed.

A weakness in typical QKD systems is the current lack of reliable commercial single-photon sources. Very weak laser pulses are used instead, and they often produce more than one photon per pulse, all with the same orientation and bit value (0 or 1). This introduces vulnerability: An eavesdropper could intercept a photon and "read" it accurately without its loss being detected by the intended receiver, because the same laser pulse may still contain another photon.

The LANL/NIST absolute distance record of 184.6 km is secure against reasonable attacks, that is, the laser adjustments used in this case have only a moderate probability of generating more than one photon per pulse. The team also used slightly different adjustments to set other QKD distance records, including absolutely secure transmission of secret keys over 67.5 km, surpassing the previous record of 50.6 km. This method generated so few multi-photon pulses that some of the photons detected at the receiver must have originated in single-photon pulses, enabling the creation of secret key.

The experiments were performed in LANL laboratories using fiber-optic cables wrapped around several spools. The photon detectors were designed and built at NIST labs in Boulder, Colo. A detector consists of a small square of thin tungsten film chilled to the transition temperature between normal conductivity and superconductivity. When a photon hits the tungsten, the temperature rises and results in an increase in electrical resistance. The change in temperature is proportional to the photon energy, allowing the sensor to determine the number of photons in a pulse of light.

Compared to commercial photodiodes typically used in QKD systems, the NIST detectors are far more efficient (detecting 65 percent of received photons versus about 20 percent) and have much lower false count rates at telecommunications wavelengths (1310 and 1550 nanometers), advantages that increase transmission distance and enhance security. The NIST detectors also recover much faster (4 microseconds versus tens of microseconds) between detection events, which may increase system speed. (The NIST sensors are capable of even greater efficiency but the rolled fiber-optic cable loses longer-wavelength photons, reducing detection efficiency at 1550 nm from 89 percent to 65 percent.)

Commercial photon detectors still have better timing resolution--capability to synchronize with the timing of photon transmissions--than the NIST sensors (less than 100 picoseconds versus 100 nanoseconds). This so-called timing jitter may cause crosstalk or signal distortion. However, the researchers believe that improvements in detector electronics will reduce this problem, potentially leading to faster transmissions over long distances.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>