Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haute Couture from the Experimental Physics Lab

26.09.2006
A team of Austrian physicists has recently developed ultra-thin pressure sensors that can also be processed into sensitive textiles.

The breakthrough came with the arrival of technology for building up a sufficiently large electrical field in polymer foams. This enabled thin-film transistors to switch in reaction to pressure. Possible applications arising from this project funded by the Austrian Science Fund FWF include ultra-thin microphones, pressure sensors for replacement skin, and interactive clothing.

Concepts such as flat and ultra-thin are the latest big thing in the electronics industry, as can be seen from the flatscreens all around us. Applications of this type are made possible by means of thin-film transistors (TFT). Pressure sensitive foils have also been around for some time. Known as ferroelectrets, these are electrically charged polymer foams that generate an electrical signal in reaction to pressure. It has not been possible in the past to use this signal to switch thin-film transistors. However, a joint Austrian and American team has recently achieved precisely this – a breakthrough in the development of ultra-thin, pressure-sensitive switches that have a range of potential applications as a result of their sensitivity and low production costs.

ELECTRO-SANDWICH

"The key factor is the correct coating of the components," explains project manager Prof. Siegfried Bauer from the Institute of Experimental Physics at the Johannes Kepler University in Linz. "We applied a propylene foam over a TFT on a polyimide base. These are the type of TFTs we know from flatscreens." The polymer propylene foam is the actual sensor. When pressed, the differently charged sides of the individual cavities in the foam converge and produce an electrical signal. Prof. Bauer explains: "The great thing about this combination is that the transistor switches only temporarily. If the pressure on the propylene layer decreases, the transistor reverts to its original state. Previously similar experiments only created permanent switching of the transistor. The transistor did not revert to its original state. That is naturally not ideal for a pressure sensor. It would still generate a signal even if the pressure were released."

FUNCTIONAL RESEARCH

The practical benefits of the work conducted by the team made up of Prof. Bauer and his colleagues at Princeton University in the U.S. stem from two facts. First the pressure sensitivity is high and exists at different pressure intensities, and second the materials used are cheap.

Prof. Bauer explains: "The pressure sensitivity of the sensor in our measurements ranged from just a few pascals to one megapascal. This is a difference of six orders of magnitude. A voltage of up to 100 V was measured, which is more than enough to switch the transistors. In fact, our calculations showed that the voltages could reach up to 340 V, but these could not be measured directly due to the capacities in the measuring apparatus." This sensitivity means that the technology could be used as a microphone, for example. This is because a volume of 100 dB corresponds to a pressure of only 2 pascals. Prof. Bauer’s team has in fact been able to demonstrate a linear relationship between the air pressure and the voltage produced using a prototype of an ultra-thin microphone.

The favorable production costs of the materials used is a further reason suggesting that the new development from this FWF project will find practical application. For example, the propylene used for the polymer foams is now being employed both in the home and in the packaging and automotive industries – even without any use being made so far of its property as a ferroelectret. The prices of TFTs are also constantly falling and, if these two components are placed on a flexible substrate, there is very little standing in the way of them being used as a pressure sensor in artificial skin or as a textile. Fashionista beware: Designed by FWF on a catwalk near you.

Original publication: Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Graz et al., Applied Physics Letters 89, 073501 (2006)

Till C. Jelitto | alfa
Further information:
http://www.prd.at
http://www.fwf.ac.at/en/public_relations/press/pv200609-en.html

More articles from Physics and Astronomy:

nachricht A Keen Sense for Molecules
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Good vibrations feel the force
23.02.2018 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>