Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haute Couture from the Experimental Physics Lab

26.09.2006
A team of Austrian physicists has recently developed ultra-thin pressure sensors that can also be processed into sensitive textiles.

The breakthrough came with the arrival of technology for building up a sufficiently large electrical field in polymer foams. This enabled thin-film transistors to switch in reaction to pressure. Possible applications arising from this project funded by the Austrian Science Fund FWF include ultra-thin microphones, pressure sensors for replacement skin, and interactive clothing.

Concepts such as flat and ultra-thin are the latest big thing in the electronics industry, as can be seen from the flatscreens all around us. Applications of this type are made possible by means of thin-film transistors (TFT). Pressure sensitive foils have also been around for some time. Known as ferroelectrets, these are electrically charged polymer foams that generate an electrical signal in reaction to pressure. It has not been possible in the past to use this signal to switch thin-film transistors. However, a joint Austrian and American team has recently achieved precisely this – a breakthrough in the development of ultra-thin, pressure-sensitive switches that have a range of potential applications as a result of their sensitivity and low production costs.

ELECTRO-SANDWICH

"The key factor is the correct coating of the components," explains project manager Prof. Siegfried Bauer from the Institute of Experimental Physics at the Johannes Kepler University in Linz. "We applied a propylene foam over a TFT on a polyimide base. These are the type of TFTs we know from flatscreens." The polymer propylene foam is the actual sensor. When pressed, the differently charged sides of the individual cavities in the foam converge and produce an electrical signal. Prof. Bauer explains: "The great thing about this combination is that the transistor switches only temporarily. If the pressure on the propylene layer decreases, the transistor reverts to its original state. Previously similar experiments only created permanent switching of the transistor. The transistor did not revert to its original state. That is naturally not ideal for a pressure sensor. It would still generate a signal even if the pressure were released."

FUNCTIONAL RESEARCH

The practical benefits of the work conducted by the team made up of Prof. Bauer and his colleagues at Princeton University in the U.S. stem from two facts. First the pressure sensitivity is high and exists at different pressure intensities, and second the materials used are cheap.

Prof. Bauer explains: "The pressure sensitivity of the sensor in our measurements ranged from just a few pascals to one megapascal. This is a difference of six orders of magnitude. A voltage of up to 100 V was measured, which is more than enough to switch the transistors. In fact, our calculations showed that the voltages could reach up to 340 V, but these could not be measured directly due to the capacities in the measuring apparatus." This sensitivity means that the technology could be used as a microphone, for example. This is because a volume of 100 dB corresponds to a pressure of only 2 pascals. Prof. Bauer’s team has in fact been able to demonstrate a linear relationship between the air pressure and the voltage produced using a prototype of an ultra-thin microphone.

The favorable production costs of the materials used is a further reason suggesting that the new development from this FWF project will find practical application. For example, the propylene used for the polymer foams is now being employed both in the home and in the packaging and automotive industries – even without any use being made so far of its property as a ferroelectret. The prices of TFTs are also constantly falling and, if these two components are placed on a flexible substrate, there is very little standing in the way of them being used as a pressure sensor in artificial skin or as a textile. Fashionista beware: Designed by FWF on a catwalk near you.

Original publication: Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Graz et al., Applied Physics Letters 89, 073501 (2006)

Till C. Jelitto | alfa
Further information:
http://www.prd.at
http://www.fwf.ac.at/en/public_relations/press/pv200609-en.html

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>