Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammoth CMS magnet reaches full-field at CERN

21.09.2006
Tests show CMS detector will be ready for data

The world’s largest superconducting solenoid magnet has reached full field. Weighing in at over 10,000 tonnes, the CMS experiment’s magnet is built around a 6-metre diameter, 13-metre long superconducting solenoid coil. It generates a field of 4 teslas, some 100,000 times higher than that of the Earth, and stores 2.5 gigajoules of energy, sufficient to melt 18 tonnes of gold.

CMS is one of the experiments preparing to take data at CERN ’s Large Hadron Collider (LHC) particle accelerator, which is scheduled to switch on in November 2007. CMS physicists will address some of nature’s most fundamental questions, such as why particles have mass and what the so-far unexplored 96% of the Universe is made of. Some 2000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector, which is currently undergoing tests prior to installation in an experimental hall 100 metres underground. These tests are being carried out with a full slice of the CMS detector, including all its subsystems. “After recording 30 million tracks from cosmic ray particles,” said CMS spokesman Michel Della Negra, “all systems are working very well, and we’re looking forward to first collisions in the LHC next year.”

The CMS magnet is a marvel of modern technology. When it was designed in the early 1990s, it was beyond the state-of-the art at the time. What makes it remarkable is not just its high magnetic field, but also the fact that the field is maintained with high uniformity over such a large volume. New techniques have had to be developed, allowing the solenoid coil to be more compact than 1990s technology could have achieved.

CMS magnet construction was approved in 1996, and began in earnest in 1998. By 2002, fabrication of the superconducting wire was complete. Winding the cable to produce the solenoid coil began in 2000 and took five years to achieve. By the end of 2005, the solenoid was ready for testing, and in February this year, it was cooled down to its operating temperature of around -269 degrees Celsius. Following the insertion of particle detectors, testing started at the end of July.

The magnet is a common project to which all of CMS’s 155 institutes have contributed financially. Major innovative and technical contributions have been made by the French Atomic Energy Commission in Saclay (CEA) for the original concept and general engineering, CERN for the project coordination, all ancillaries, and the magnet yoke and assembly, the Swiss Federal Institute of Technology (ETH Zurich) for the development and production of the compound superconductor and organization of major magnet procurement including the barrel yoke, the US Department of Energy's Fermi National Accelerator Laboratory near Chicago for the superconducting wire and field mapping, the Italian National Institute of Nuclear Physics (INFN) in Genoa for the design and execution of the winding operation, the Russian Institute for Theoretical and Experimental Physics (ITEP) in Moscow and the University of Wisconsin for the endcap yoke.

Sophie Sanchis | alfa
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>