Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammoth CMS magnet reaches full-field at CERN

21.09.2006
Tests show CMS detector will be ready for data

The world’s largest superconducting solenoid magnet has reached full field. Weighing in at over 10,000 tonnes, the CMS experiment’s magnet is built around a 6-metre diameter, 13-metre long superconducting solenoid coil. It generates a field of 4 teslas, some 100,000 times higher than that of the Earth, and stores 2.5 gigajoules of energy, sufficient to melt 18 tonnes of gold.

CMS is one of the experiments preparing to take data at CERN ’s Large Hadron Collider (LHC) particle accelerator, which is scheduled to switch on in November 2007. CMS physicists will address some of nature’s most fundamental questions, such as why particles have mass and what the so-far unexplored 96% of the Universe is made of. Some 2000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector, which is currently undergoing tests prior to installation in an experimental hall 100 metres underground. These tests are being carried out with a full slice of the CMS detector, including all its subsystems. “After recording 30 million tracks from cosmic ray particles,” said CMS spokesman Michel Della Negra, “all systems are working very well, and we’re looking forward to first collisions in the LHC next year.”

The CMS magnet is a marvel of modern technology. When it was designed in the early 1990s, it was beyond the state-of-the art at the time. What makes it remarkable is not just its high magnetic field, but also the fact that the field is maintained with high uniformity over such a large volume. New techniques have had to be developed, allowing the solenoid coil to be more compact than 1990s technology could have achieved.

CMS magnet construction was approved in 1996, and began in earnest in 1998. By 2002, fabrication of the superconducting wire was complete. Winding the cable to produce the solenoid coil began in 2000 and took five years to achieve. By the end of 2005, the solenoid was ready for testing, and in February this year, it was cooled down to its operating temperature of around -269 degrees Celsius. Following the insertion of particle detectors, testing started at the end of July.

The magnet is a common project to which all of CMS’s 155 institutes have contributed financially. Major innovative and technical contributions have been made by the French Atomic Energy Commission in Saclay (CEA) for the original concept and general engineering, CERN for the project coordination, all ancillaries, and the magnet yoke and assembly, the Swiss Federal Institute of Technology (ETH Zurich) for the development and production of the compound superconductor and organization of major magnet procurement including the barrel yoke, the US Department of Energy's Fermi National Accelerator Laboratory near Chicago for the superconducting wire and field mapping, the Italian National Institute of Nuclear Physics (INFN) in Genoa for the design and execution of the winding operation, the Russian Institute for Theoretical and Experimental Physics (ITEP) in Moscow and the University of Wisconsin for the endcap yoke.

Sophie Sanchis | alfa
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>