Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammoth CMS magnet reaches full-field at CERN

21.09.2006
Tests show CMS detector will be ready for data

The world’s largest superconducting solenoid magnet has reached full field. Weighing in at over 10,000 tonnes, the CMS experiment’s magnet is built around a 6-metre diameter, 13-metre long superconducting solenoid coil. It generates a field of 4 teslas, some 100,000 times higher than that of the Earth, and stores 2.5 gigajoules of energy, sufficient to melt 18 tonnes of gold.

CMS is one of the experiments preparing to take data at CERN ’s Large Hadron Collider (LHC) particle accelerator, which is scheduled to switch on in November 2007. CMS physicists will address some of nature’s most fundamental questions, such as why particles have mass and what the so-far unexplored 96% of the Universe is made of. Some 2000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector, which is currently undergoing tests prior to installation in an experimental hall 100 metres underground. These tests are being carried out with a full slice of the CMS detector, including all its subsystems. “After recording 30 million tracks from cosmic ray particles,” said CMS spokesman Michel Della Negra, “all systems are working very well, and we’re looking forward to first collisions in the LHC next year.”

The CMS magnet is a marvel of modern technology. When it was designed in the early 1990s, it was beyond the state-of-the art at the time. What makes it remarkable is not just its high magnetic field, but also the fact that the field is maintained with high uniformity over such a large volume. New techniques have had to be developed, allowing the solenoid coil to be more compact than 1990s technology could have achieved.

CMS magnet construction was approved in 1996, and began in earnest in 1998. By 2002, fabrication of the superconducting wire was complete. Winding the cable to produce the solenoid coil began in 2000 and took five years to achieve. By the end of 2005, the solenoid was ready for testing, and in February this year, it was cooled down to its operating temperature of around -269 degrees Celsius. Following the insertion of particle detectors, testing started at the end of July.

The magnet is a common project to which all of CMS’s 155 institutes have contributed financially. Major innovative and technical contributions have been made by the French Atomic Energy Commission in Saclay (CEA) for the original concept and general engineering, CERN for the project coordination, all ancillaries, and the magnet yoke and assembly, the Swiss Federal Institute of Technology (ETH Zurich) for the development and production of the compound superconductor and organization of major magnet procurement including the barrel yoke, the US Department of Energy's Fermi National Accelerator Laboratory near Chicago for the superconducting wire and field mapping, the Italian National Institute of Nuclear Physics (INFN) in Genoa for the design and execution of the winding operation, the Russian Institute for Theoretical and Experimental Physics (ITEP) in Moscow and the University of Wisconsin for the endcap yoke.

Sophie Sanchis | alfa
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht Supersensitive through quantum entanglement
28.06.2017 | Universität Stuttgart

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>