Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To be or not to be: Is it all about spinning?

21.09.2006
VLTI discerns how matter behaves in disc around a Be star

Thanks to the unique possibilities offered by ESO's Very Large Telescope Interferometer (VLTI), astronomers have solved a 140-year-old mystery concerning active hot stars. They indeed show that the star Alpha Arae is spinning almost on the verge of breaking and that its disc rotates the same way planets do around the Sun.

"This result could only be achieved because of the great details we could observe with the AMBER instrument combining three 8.2-m Unit Telescopes of ESO's VLT," said Philippe Stee, leader of the team that performed the study [1]".

With AMBER on the VLTI [2], the astronomers were able to see details on the scale of one milli-arcsecond, corresponding to being able to distinguish, from the Earth, the headlights of a car on the Moon.

Lying about 300 light-years away from the Sun, Alpha Arae is the closest member of the class of active stars known as 'Be stars'. Be stars [3] are very luminous, massive and hot stars that rotate rapidly. They are losing mass along the poles through a strong stellar wind and are surrounded at the equator by a disc of matter. Alpha Arae has ten times the mass of the Sun, is three times hotter and 6 000 times as luminous.

The question how the discs around active stars known as Be-stars rotate was posed since the discovery of the first one, Gamma Cassiopeiae, by Italian astronomer Father Angelo Secchi, exactly 140 years ago, on 23 August 1866 in Rome.

With AMBER, the team of astronomers could examine in details the structure of the disc surrounding Alpha Arae. Moreover, because AMBER also provides spectra, the astronomers could study the motion of the gas in the disc and so understand how it rotates.

"Although previous theoretical studies had already provided some indications, our result - the first to supply observational evidence - may be the final exclamation mark regarding this puzzle", said Stee.

The scientists found the material in the disc surrounding Alpha Arae to be in 'Keplerian rotation', that is, obeying the same rules as discovered by Johannes Kepler for the planets circling the Sun: the velocity of the material decreases with the square root of the distance from the star.

The new result rules out the possibility for the disc to rotate with a uniform velocity, as would be the case if a strong magnetic field were present that would oblige the matter to spin at the same rate as the star.

Combining the new data with previous studies, the astronomers also show that the star Alpha Arae, which is five times larger than the Sun, rotates around completely in about half a day, 50 times faster than our Sun. In fact, with a speed at the equator of 470 km/s, it is spinning so quickly that it is near its break-up velocity. Matter having such a critical velocity would be able to freely escape from the star, in the same way that we would be ejected from a 'gone crazy' merry-go-round.

"This nearly critical rotation may be the clue to the 'Be phenomenon'", said Stee. "It may bring sufficient energy to levitate material to create the circumstellar disc."

Finally, the astronomers were also able to show that the star loses mass through a stellar wind emerging predominantly from the poles and reaching velocities of the order of 2000 km/s.

These observations demonstrate once again the great potential of the ESO Very Large Telescope Interferometer that allows astronomers to combine 2 or 3 of the VLT Unit Telescopes or the associated moveable Auxiliary Telescopes, to obtain great details with spectroscopic information. The VLTI already provided useful information about other very fast rotating stars, such as Achernar (ESO PR 14/03) or Eta Carinae (ESO PR 31/03).

Notes

[1]: The team is composed of A. Meilland, Ph. Stee, A. Spang (Observatoire de la Côte d'Azur, France). F. Millour, A. Domiciano de Souza, R. Petrov. (Université de Nice, France), M. Vannier, A. Richichi (ESO), C. Martayan (Observatoire de Paris, France), F. Malbet (Laboratoire d'Astrophysique de Grenoble, France), and F. Paresce (INAF, Itally). This result is presented in "First direct detection of a Keplerian rotating disk around the Be star Alpha Arae using the VLTI/AMBER instrument", by A. Meilland et al., in press in the research journal Astronomy and Astrophysics.

[2]: The Astronomical Multiple BEam Recombiner (AMBER) is a near-infrared, multi-beam interferometric instrument, combining simultaneously 3 telescopes. It was built in collaboration with ESO by a consortium of French, German and Italian institutes. It is offered to the users since October 2005. For more information, see the AMBER homepage. A press release about the First Light is available as ESO Press Release 07/04.

[3]: Be stars are stars of spectral type B, with emission lines in their spectra, hence the "e". Because they are an important source of ultraviolet photons, Be stars play an important role in the heating of galaxies. What causes B stars to become Be stars is not yet well understood.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-35-06.html

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>