Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To be or not to be: Is it all about spinning?

21.09.2006
VLTI discerns how matter behaves in disc around a Be star

Thanks to the unique possibilities offered by ESO's Very Large Telescope Interferometer (VLTI), astronomers have solved a 140-year-old mystery concerning active hot stars. They indeed show that the star Alpha Arae is spinning almost on the verge of breaking and that its disc rotates the same way planets do around the Sun.

"This result could only be achieved because of the great details we could observe with the AMBER instrument combining three 8.2-m Unit Telescopes of ESO's VLT," said Philippe Stee, leader of the team that performed the study [1]".

With AMBER on the VLTI [2], the astronomers were able to see details on the scale of one milli-arcsecond, corresponding to being able to distinguish, from the Earth, the headlights of a car on the Moon.

Lying about 300 light-years away from the Sun, Alpha Arae is the closest member of the class of active stars known as 'Be stars'. Be stars [3] are very luminous, massive and hot stars that rotate rapidly. They are losing mass along the poles through a strong stellar wind and are surrounded at the equator by a disc of matter. Alpha Arae has ten times the mass of the Sun, is three times hotter and 6 000 times as luminous.

The question how the discs around active stars known as Be-stars rotate was posed since the discovery of the first one, Gamma Cassiopeiae, by Italian astronomer Father Angelo Secchi, exactly 140 years ago, on 23 August 1866 in Rome.

With AMBER, the team of astronomers could examine in details the structure of the disc surrounding Alpha Arae. Moreover, because AMBER also provides spectra, the astronomers could study the motion of the gas in the disc and so understand how it rotates.

"Although previous theoretical studies had already provided some indications, our result - the first to supply observational evidence - may be the final exclamation mark regarding this puzzle", said Stee.

The scientists found the material in the disc surrounding Alpha Arae to be in 'Keplerian rotation', that is, obeying the same rules as discovered by Johannes Kepler for the planets circling the Sun: the velocity of the material decreases with the square root of the distance from the star.

The new result rules out the possibility for the disc to rotate with a uniform velocity, as would be the case if a strong magnetic field were present that would oblige the matter to spin at the same rate as the star.

Combining the new data with previous studies, the astronomers also show that the star Alpha Arae, which is five times larger than the Sun, rotates around completely in about half a day, 50 times faster than our Sun. In fact, with a speed at the equator of 470 km/s, it is spinning so quickly that it is near its break-up velocity. Matter having such a critical velocity would be able to freely escape from the star, in the same way that we would be ejected from a 'gone crazy' merry-go-round.

"This nearly critical rotation may be the clue to the 'Be phenomenon'", said Stee. "It may bring sufficient energy to levitate material to create the circumstellar disc."

Finally, the astronomers were also able to show that the star loses mass through a stellar wind emerging predominantly from the poles and reaching velocities of the order of 2000 km/s.

These observations demonstrate once again the great potential of the ESO Very Large Telescope Interferometer that allows astronomers to combine 2 or 3 of the VLT Unit Telescopes or the associated moveable Auxiliary Telescopes, to obtain great details with spectroscopic information. The VLTI already provided useful information about other very fast rotating stars, such as Achernar (ESO PR 14/03) or Eta Carinae (ESO PR 31/03).

Notes

[1]: The team is composed of A. Meilland, Ph. Stee, A. Spang (Observatoire de la Côte d'Azur, France). F. Millour, A. Domiciano de Souza, R. Petrov. (Université de Nice, France), M. Vannier, A. Richichi (ESO), C. Martayan (Observatoire de Paris, France), F. Malbet (Laboratoire d'Astrophysique de Grenoble, France), and F. Paresce (INAF, Itally). This result is presented in "First direct detection of a Keplerian rotating disk around the Be star Alpha Arae using the VLTI/AMBER instrument", by A. Meilland et al., in press in the research journal Astronomy and Astrophysics.

[2]: The Astronomical Multiple BEam Recombiner (AMBER) is a near-infrared, multi-beam interferometric instrument, combining simultaneously 3 telescopes. It was built in collaboration with ESO by a consortium of French, German and Italian institutes. It is offered to the users since October 2005. For more information, see the AMBER homepage. A press release about the First Light is available as ESO Press Release 07/04.

[3]: Be stars are stars of spectral type B, with emission lines in their spectra, hence the "e". Because they are an important source of ultraviolet photons, Be stars play an important role in the heating of galaxies. What causes B stars to become Be stars is not yet well understood.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-35-06.html

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>