Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paramecia Adapt Their Swimming to Changing Gravitational Force

20.09.2006
Using a high-powered electromagnet, Brown University physicists Karine Guevorkian and James Valles have created a topsy-turvy world for the single-celled paramecium. They have managed to increase, eliminate and even reverse the effects of gravity on the tiny protozoan, changing its swimming behavior and indirectly measuring its swimming force.

For many single-celled organisms living in water, the force is always against them. The classic example is the slipper-shaped paramecium, which consistently swims harder going up than going down, just to keep from sinking. Now physicists Karine Guevorkian and James Valles of Brown University have worked out a way to turn gravity on its head and see how the creatures respond.

The researchers placed a vial with pond water and live paramecia inside a high-powered electromagnet at the National High Magnetic Field Laboratory in Tallahassee, Fla. The organisms are less susceptible to a magnetic field than plain water is, so the magnetic field generated inside the vial “pulls” harder on the water than on the cells. If the field is pulling down, the cells float. If it’s pulling up, they sink.

Using water alone, Valles and Guevorkian were able to increase the effect of gravity by about 50 percent. To increase the effect even further, they added a compound called Gadolinium-diethylene-triamine-pentaacetate (Gd-DTPA) to the water. Gd-DPTA is highly susceptible to induced magnetic fields such as those generated in electromagnets. This allowed the researchers to make the water much “heavier” or “lighter,” relative to the paramecia, achieving an effect up to 10 times that of normal gravity. The magnetic field is continuously adjustable, so Valles and Guevorkian were also able to create conditions simulating zero-gravity and inverse-gravity.

By dialing the magnetic field up or down, the researchers could change the swimming behavior of the paramecia dramatically. In high gravity, the organisms swam upward mightily to maintain their place in the water column. In zero gravity, they swam up and down equally. And in reverse gravity, they dove for where the sediments ought to be.

“If you want to make something float more,” said Valles, “you put it in a fluid and you pull the fluid down harder than you pull the thing down. And that’s what we basically do with the magnet. That causes the cell to float more – and that turns gravity upside down for the cell.”

Cranking the field intensity even higher, Valles and Guevorkian could test the limits of protozoan endurance. At about eight times normal gravity, the little swimmers stalled, swimming upward, but making no progress. At this break-even point, the physicists could measure the force needed to counter the gravitational effect: 0.7 nano-Newtons. For comparison, the force required to press a key on a computer keyboard is about 22 Newtons or more than 3 billion times as strong.

Space-based research has demonstrated many puzzling biological effects related to reduced gravity, such as changes in bone cell development and gene expression. But methods for manipulating gravity in the Earth-based laboratory have been few and troublesome, hindering further research in these areas. This new method will allow researchers to subject small biological systems to gravitational effects similar to those encountered in space, allowing less expensive and more complex experiments on the biological response to altered gravity.

Valles is professor of physics at Brown University. Guevorkian, who recently received her Ph.D. at Brown, has accepted a postdoctoral position at Institut Curie in Paris. Their work on paramecia and the effects of gravity was funded by the National Aeronautics and Space Administration (NASA).

Marty Downs | EurekAlert!
Further information:
http://www.brown.edu/Administration/News_Bureau/2006-07/06-024.html
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>