Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small, low-noise oscillator may help in surveillance

19.09.2006
A new design for a microwave oscillator that is smaller, simpler, and produces clearer signals at a single frequency than comparable devices has been invented at the National Institute of Standards and Technology (NIST).

Applications could include homeland security (e.g., surveillance of radio traffic for anomalous signals, or high-resolution digital imaging radar on unmanned aircraft), telecommunications (e.g., maintaining separation between frequencies in high-bandwidth networks), and perhaps even consumer devices (e.g., satellite television downlinks).

A patent was issued recently* for the NIST oscillator, which is about the size of a roll of 35 mm camera film. NIST researchers have built five prototypes on test fixtures, which offer several-orders-of-magnitude reductions in various types of self-generated signal interference, or noise, compared to typical commercial oscillators, resulting in improved frequency stability, according to David Howe, one of the inventors. In addition, the simple design reduces costs and improves reliability, while consuming less power than other oscillators of comparable signal purity. The small size could be an advantage on some surveillance platforms.

Microwave oscillators are used as reference or clock signals in many high-precision technologies. Through control of temperature and other variables, the oscillators produce a desired signal at one narrowly defined frequency while suppressing random, electronically induced "noise" generated by components. In the best microwave oscillators, the signal typically is amplified inside a metal cavity containing a solid insulating material that internally sustains microwaves and radio waves with minimal loss, especially at cryogenic temperatures, an expensive and complex design. By contrast, the NIST oscillator uses an ultra-stiff ceramic manifold that supports a single frequency with either a vacuum or air as the insulating medium.

The NIST device operates at high signal power (many watts) without the noise penalty found in the conventional design just described. The technique maintains such a stable frequency that it can overcome or compensate for self-generated noise produced by components such as amplifiers that sustain oscillation. NIST researchers continue to work on improvements, hoping to make the technology more tolerant of vibrations such as those from aircraft, field radars, and even sub-audible vibrations in buildings.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>