Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

General relativity survives gruelling pulsar test

18.09.2006
Astronomers have used a pair of pulsars orbiting each other, found with CSIRO’s Parkes telescope in 2003, to show that Einstein’s theory of general relativity is correct to within 0.05% – the most stringent limit to date.
They also hope to be able to use the two pulsars to determine the exact nature of the matter that pulsars and other neutron stars are made of.

Their results are to be published in the journal Science, and made available online in Science Express Science Express [external link] on 14 September 2006.

An international research team led by Professor Michael Kramer of the University of Manchester's Jodrell Bank Observatory, UK, has been observing the double-pulsar system since 2003 with three of the world’s largest radio telescopes: CSIRO’s Parkes radio telescope in NSW, Australia; the Lovell Telescope near Manchester, UK; and the Robert C. Byrd Green Bank Telescope in West Virginia, USA.

The double-pulsar system, whose pulsars are called PSR J0737-3039A and B, is the only known system of radio pulsars orbiting each other. It lies 2000 light-years away in the direction of the constellation Puppis.

The system consists of two massive, highly compact neutron stars, each weighing more than our own Sun but only about 20 km across, orbiting each other every 2.4 hours at speeds of a million kilometres per hour.

Separated by a distance of just a million kilometres, both neutron stars emit lighthouse-like beams of radio waves that are seen as radio ’pulses‘ every time the beams sweep past Earth.

By precisely measuring the variations in pulse arrival times, the researchers found the movement of the stars to exactly follow Einstein's predictions. "This is the most stringent test ever made of GR in the presence of very strong gravitational fields—only black holes show stronger gravitational effects, but they are obviously much more difficult to observe,” Professor Kramer says.

Co-author Ingrid Stairs, an assistant professor at the University of British Columbia in Vancouver, Canada, says it is possible to measure the pulsars’ distances from their common centre of mass. "The heavier pulsar is closer to the centre of mass, or pivot point, than the lighter one and this allows us to calculate the ratio of the two masses,” she says.

This mass ratio is independent of the theory of gravity, and so tightens the constraints on general relativity and any alternative gravitational theories.

Other relativistic effects predicted by Einstein can be observed: the fabric of space-time around pulsar B is curved, and the other pulsar’s “clock” runs slower when it is deeper in the gravitational field of its massive companion. Each of these effects provides an independent test of general relativity.

The distance between the pulsars is shrinking by 7 mm a day. Einstein's theory predicts that the double pulsar system should be emitting gravitational waves – ripples in space-time that spread out across the Universe at the speed of light.

"These waves have yet to be directly detected,” says team member Prof. Dick Manchester of CSIRO’s Australia Telescope National Facility ATNF). "But, as a result, the double pulsar system should lose energy causing the two neutron stars to spiral in towards each other by precisely the amount that we have observed – thus our observations give an indirect proof of the existence of gravitational waves."

The astronomers hope that over the next few years they can make even more precise measurements of the characteristics of the system, allowing them to measure the moment of inertia of a neutron star. (“Moment of inertia” is a measure of how much a body resists a force trying to rotate it.) “This measurement may be very difficult but if we could do it to just a precision of 30 per cent, we could distinguish between the many different ideas about the nature of the matter that makes up neutron stars,” says team member Dr George Hobbs of the ATNF.

Technical note

Six parameters are measured in the tests of general relativity. They relate to:

- the relativistic precession of the orbit
- variations in the Doppler effect and gravitational redshift as the pulsar moves around its elliptical orbit
- the time variation in the orbital period
- the Shapiro delay, which describes a delay to a pulse travelling through the - curved space-time of a massive object, and
- the mass ratio derived from the measured semi-major axes of the orbits.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>