Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

General relativity survives gruelling pulsar test

18.09.2006
Astronomers have used a pair of pulsars orbiting each other, found with CSIRO’s Parkes telescope in 2003, to show that Einstein’s theory of general relativity is correct to within 0.05% – the most stringent limit to date.
They also hope to be able to use the two pulsars to determine the exact nature of the matter that pulsars and other neutron stars are made of.

Their results are to be published in the journal Science, and made available online in Science Express Science Express [external link] on 14 September 2006.

An international research team led by Professor Michael Kramer of the University of Manchester's Jodrell Bank Observatory, UK, has been observing the double-pulsar system since 2003 with three of the world’s largest radio telescopes: CSIRO’s Parkes radio telescope in NSW, Australia; the Lovell Telescope near Manchester, UK; and the Robert C. Byrd Green Bank Telescope in West Virginia, USA.

The double-pulsar system, whose pulsars are called PSR J0737-3039A and B, is the only known system of radio pulsars orbiting each other. It lies 2000 light-years away in the direction of the constellation Puppis.

The system consists of two massive, highly compact neutron stars, each weighing more than our own Sun but only about 20 km across, orbiting each other every 2.4 hours at speeds of a million kilometres per hour.

Separated by a distance of just a million kilometres, both neutron stars emit lighthouse-like beams of radio waves that are seen as radio ’pulses‘ every time the beams sweep past Earth.

By precisely measuring the variations in pulse arrival times, the researchers found the movement of the stars to exactly follow Einstein's predictions. "This is the most stringent test ever made of GR in the presence of very strong gravitational fields—only black holes show stronger gravitational effects, but they are obviously much more difficult to observe,” Professor Kramer says.

Co-author Ingrid Stairs, an assistant professor at the University of British Columbia in Vancouver, Canada, says it is possible to measure the pulsars’ distances from their common centre of mass. "The heavier pulsar is closer to the centre of mass, or pivot point, than the lighter one and this allows us to calculate the ratio of the two masses,” she says.

This mass ratio is independent of the theory of gravity, and so tightens the constraints on general relativity and any alternative gravitational theories.

Other relativistic effects predicted by Einstein can be observed: the fabric of space-time around pulsar B is curved, and the other pulsar’s “clock” runs slower when it is deeper in the gravitational field of its massive companion. Each of these effects provides an independent test of general relativity.

The distance between the pulsars is shrinking by 7 mm a day. Einstein's theory predicts that the double pulsar system should be emitting gravitational waves – ripples in space-time that spread out across the Universe at the speed of light.

"These waves have yet to be directly detected,” says team member Prof. Dick Manchester of CSIRO’s Australia Telescope National Facility ATNF). "But, as a result, the double pulsar system should lose energy causing the two neutron stars to spiral in towards each other by precisely the amount that we have observed – thus our observations give an indirect proof of the existence of gravitational waves."

The astronomers hope that over the next few years they can make even more precise measurements of the characteristics of the system, allowing them to measure the moment of inertia of a neutron star. (“Moment of inertia” is a measure of how much a body resists a force trying to rotate it.) “This measurement may be very difficult but if we could do it to just a precision of 30 per cent, we could distinguish between the many different ideas about the nature of the matter that makes up neutron stars,” says team member Dr George Hobbs of the ATNF.

Technical note

Six parameters are measured in the tests of general relativity. They relate to:

- the relativistic precession of the orbit
- variations in the Doppler effect and gravitational redshift as the pulsar moves around its elliptical orbit
- the time variation in the orbital period
- the Shapiro delay, which describes a delay to a pulse travelling through the - curved space-time of a massive object, and
- the mass ratio derived from the measured semi-major axes of the orbits.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>