Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


General relativity survives gruelling pulsar test

Astronomers have used a pair of pulsars orbiting each other, found with CSIRO’s Parkes telescope in 2003, to show that Einstein’s theory of general relativity is correct to within 0.05% – the most stringent limit to date.
They also hope to be able to use the two pulsars to determine the exact nature of the matter that pulsars and other neutron stars are made of.

Their results are to be published in the journal Science, and made available online in Science Express Science Express [external link] on 14 September 2006.

An international research team led by Professor Michael Kramer of the University of Manchester's Jodrell Bank Observatory, UK, has been observing the double-pulsar system since 2003 with three of the world’s largest radio telescopes: CSIRO’s Parkes radio telescope in NSW, Australia; the Lovell Telescope near Manchester, UK; and the Robert C. Byrd Green Bank Telescope in West Virginia, USA.

The double-pulsar system, whose pulsars are called PSR J0737-3039A and B, is the only known system of radio pulsars orbiting each other. It lies 2000 light-years away in the direction of the constellation Puppis.

The system consists of two massive, highly compact neutron stars, each weighing more than our own Sun but only about 20 km across, orbiting each other every 2.4 hours at speeds of a million kilometres per hour.

Separated by a distance of just a million kilometres, both neutron stars emit lighthouse-like beams of radio waves that are seen as radio ’pulses‘ every time the beams sweep past Earth.

By precisely measuring the variations in pulse arrival times, the researchers found the movement of the stars to exactly follow Einstein's predictions. "This is the most stringent test ever made of GR in the presence of very strong gravitational fields—only black holes show stronger gravitational effects, but they are obviously much more difficult to observe,” Professor Kramer says.

Co-author Ingrid Stairs, an assistant professor at the University of British Columbia in Vancouver, Canada, says it is possible to measure the pulsars’ distances from their common centre of mass. "The heavier pulsar is closer to the centre of mass, or pivot point, than the lighter one and this allows us to calculate the ratio of the two masses,” she says.

This mass ratio is independent of the theory of gravity, and so tightens the constraints on general relativity and any alternative gravitational theories.

Other relativistic effects predicted by Einstein can be observed: the fabric of space-time around pulsar B is curved, and the other pulsar’s “clock” runs slower when it is deeper in the gravitational field of its massive companion. Each of these effects provides an independent test of general relativity.

The distance between the pulsars is shrinking by 7 mm a day. Einstein's theory predicts that the double pulsar system should be emitting gravitational waves – ripples in space-time that spread out across the Universe at the speed of light.

"These waves have yet to be directly detected,” says team member Prof. Dick Manchester of CSIRO’s Australia Telescope National Facility ATNF). "But, as a result, the double pulsar system should lose energy causing the two neutron stars to spiral in towards each other by precisely the amount that we have observed – thus our observations give an indirect proof of the existence of gravitational waves."

The astronomers hope that over the next few years they can make even more precise measurements of the characteristics of the system, allowing them to measure the moment of inertia of a neutron star. (“Moment of inertia” is a measure of how much a body resists a force trying to rotate it.) “This measurement may be very difficult but if we could do it to just a precision of 30 per cent, we could distinguish between the many different ideas about the nature of the matter that makes up neutron stars,” says team member Dr George Hobbs of the ATNF.

Technical note

Six parameters are measured in the tests of general relativity. They relate to:

- the relativistic precession of the orbit
- variations in the Doppler effect and gravitational redshift as the pulsar moves around its elliptical orbit
- the time variation in the orbital period
- the Shapiro delay, which describes a delay to a pulse travelling through the - curved space-time of a massive object, and
- the mass ratio derived from the measured semi-major axes of the orbits.

Helen Sim | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>