Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

General relativity survives gruelling pulsar test

18.09.2006
Astronomers have used a pair of pulsars orbiting each other, found with CSIRO’s Parkes telescope in 2003, to show that Einstein’s theory of general relativity is correct to within 0.05% – the most stringent limit to date.
They also hope to be able to use the two pulsars to determine the exact nature of the matter that pulsars and other neutron stars are made of.

Their results are to be published in the journal Science, and made available online in Science Express Science Express [external link] on 14 September 2006.

An international research team led by Professor Michael Kramer of the University of Manchester's Jodrell Bank Observatory, UK, has been observing the double-pulsar system since 2003 with three of the world’s largest radio telescopes: CSIRO’s Parkes radio telescope in NSW, Australia; the Lovell Telescope near Manchester, UK; and the Robert C. Byrd Green Bank Telescope in West Virginia, USA.

The double-pulsar system, whose pulsars are called PSR J0737-3039A and B, is the only known system of radio pulsars orbiting each other. It lies 2000 light-years away in the direction of the constellation Puppis.

The system consists of two massive, highly compact neutron stars, each weighing more than our own Sun but only about 20 km across, orbiting each other every 2.4 hours at speeds of a million kilometres per hour.

Separated by a distance of just a million kilometres, both neutron stars emit lighthouse-like beams of radio waves that are seen as radio ’pulses‘ every time the beams sweep past Earth.

By precisely measuring the variations in pulse arrival times, the researchers found the movement of the stars to exactly follow Einstein's predictions. "This is the most stringent test ever made of GR in the presence of very strong gravitational fields—only black holes show stronger gravitational effects, but they are obviously much more difficult to observe,” Professor Kramer says.

Co-author Ingrid Stairs, an assistant professor at the University of British Columbia in Vancouver, Canada, says it is possible to measure the pulsars’ distances from their common centre of mass. "The heavier pulsar is closer to the centre of mass, or pivot point, than the lighter one and this allows us to calculate the ratio of the two masses,” she says.

This mass ratio is independent of the theory of gravity, and so tightens the constraints on general relativity and any alternative gravitational theories.

Other relativistic effects predicted by Einstein can be observed: the fabric of space-time around pulsar B is curved, and the other pulsar’s “clock” runs slower when it is deeper in the gravitational field of its massive companion. Each of these effects provides an independent test of general relativity.

The distance between the pulsars is shrinking by 7 mm a day. Einstein's theory predicts that the double pulsar system should be emitting gravitational waves – ripples in space-time that spread out across the Universe at the speed of light.

"These waves have yet to be directly detected,” says team member Prof. Dick Manchester of CSIRO’s Australia Telescope National Facility ATNF). "But, as a result, the double pulsar system should lose energy causing the two neutron stars to spiral in towards each other by precisely the amount that we have observed – thus our observations give an indirect proof of the existence of gravitational waves."

The astronomers hope that over the next few years they can make even more precise measurements of the characteristics of the system, allowing them to measure the moment of inertia of a neutron star. (“Moment of inertia” is a measure of how much a body resists a force trying to rotate it.) “This measurement may be very difficult but if we could do it to just a precision of 30 per cent, we could distinguish between the many different ideas about the nature of the matter that makes up neutron stars,” says team member Dr George Hobbs of the ATNF.

Technical note

Six parameters are measured in the tests of general relativity. They relate to:

- the relativistic precession of the orbit
- variations in the Doppler effect and gravitational redshift as the pulsar moves around its elliptical orbit
- the time variation in the orbital period
- the Shapiro delay, which describes a delay to a pulse travelling through the - curved space-time of a massive object, and
- the mass ratio derived from the measured semi-major axes of the orbits.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>