Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini's Visual and Infrared Mapping Spectrometer detects vast polar ethane cloud on Titan

18.09.2006
Cassini's Visual and Infrared Mapping Spectrometer (VIMS) has detected what appears to be a massive ethane cloud surrounding Titan's north pole. The cloud might be snowing ethane snowflakes into methane lakes below.

The cloud may be the clue needed in solving a puzzle that has confounded scientists who so far have seen little evidence of a veil of ethane clouds and surface liquids originally thought extensive enough to cover the entire surface of Titan with a 300-meter-deep ocean.

Before the Cassini-Huygens mission began visiting Titan in 2004, "We expected to see lots of ethane -- vast ethane clouds at all latitudes and extensive seas on the surface of Saturn's giant moon Titan," University of Arizona planetary scientist Caitlin Griffith said.

That's because solar ultraviolet light irreversibly breaks down methane in Titan's mostly nitrogen atmosphere. Ethane is by far the most plentiful byproduct when methane breaks down. If methane has been a constituent of the atmosphere throughout Titan's 4.5-billion-year lifetime -- and there was no reason to suspect it had not -- the large moon would be awash with seas of ethane, scientists theorized.

NASA's Cassini spacecraft radar found lakes in Titan's north arctic latitudes on a flyby last July 22. However, "We now know that Titan's surface is largely devoid of lakes and oceans," Griffith said. She is a member of the UA-based Cassini VIMS team, headed by Professor Robert Brown of UA's Lunar and Planetary Lab.

The missing ethane is all the more mysterious because Cassini images suggest that other less abundant solid precipitates from the photochemical reactions in Titan's atmosphere have formed dunes and covered craters on its surface, Griffith said.

VIMS made the first detection of Titan's vast polar ethane cloud when it probed Titan's high northern latitudes on Cassini flybys in December 2004, August 2005, and September 2005.

VIMS detected the cirrus cloud as a bright band at altitudes from between 30 km and 60 km at the edge of Titan's arctic circle, between 51 degrees and 69 degrees north latitude. VIMS saw only part of the cloud because most of the northern polar region is in winter's shadow and won't be fully illuminated until 2010, Griffith noted.

"Our observations imply that surface deposits of ethane should be found specifically at the poles, rather than globally distributed across Titan's disk as previously assumed," Griffith said. "That may partially explain the lack of liquid ethane oceans and clouds at Titan's middle and lower latitudes."

"We think that ethane is raining or, if temperatures are cool enough, snowing on the north pole right now. When the seasons switch, we expect ethane to condense at the south pole during its winter," Griffith said. If polar conditions are as cool as predictions say, ethane could accumulate as polar ice.

Ethane dissolves in methane, which scientists predict is raining from the atmosphere at the north pole during its cool winter. "During the polar winters, we expect the lowlands to cradle methane lakes that are rich with ethane," Griffith noted. "Perhaps these are the lakes recently imaged by Cassini."

If ethane was produced at today's rate over Titan's entire lifetime, a total of two kilometers of ethane would have precipitated over the poles. But that seems unlikely, Griffith said.

Scientists have no direct evidence for polar caps of ethane ice. Titan's north pole is in winter darkness, and Cassini cameras have yet to see it in reflected light. Cassini cameras have imaged Titan's south pole. "The morphology seen in those images doesn't suggest a two kilometer polar ice cap, but the images do show flow features," Griffith said.

"We're going to start making more polar passes in the upcoming months," she added. "By the end of next year Cassini will have recorded the first polar temperature profile of Titan, which will tell us how cold conditions are at the pole."

Griffith is first author on the article, "Evidence for a Polar Ethane Cloud on Titan," published in the current (Sept.15) issue of Science. Paulo Pinteado and VIMS team leader Robert Brown of the UA and researchers from France, the Jet Propulsion Laboratory in Pasadena, Calif., the U.S. Geological Survey, Cornell University, NASA Ames Research Center, Portugal and Germany are co-authors.

Griffith, Pinteado and Robert Kursinski of UA collaborated earlier in studies of the thousand-mile-long methane clouds that band Titan at southern latitudes. They concluded from analyzing VIMS images that these highly localized, convective clouds, which are composed of methane, result from summer heating much as thunderstorms form on Earth.

The VIMS instrument is an imaging spectrometer that produces a special data set called an image cube. It takes an image of an object in many colors simultaneously. An ordinary video camera takes images in three primary colors (red, green, and blue) and combines them to produce images as seen by the human eye. The VIMS instrument takes images in 352 separate wavelengths, or colors, spanning a realm of colors far beyond those visible to humans. All materials reflect light in a unique way. So molecules of any element or compound can be identified by the wavelengths they reflect or absorb, their "signature" spectra.

Caitlin Griffith | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>