Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Ideas for X-Ray Lasers

18.09.2006
At the 10th International Conference on X-Ray Lasers in Berlin, organized by the Max Born Institute (MBI), a novel design for X-ray lasers was the leading topic of many presentations The organizers themselves have proposed a new solution to the problem. Scientists world-wide are working on lasers with shorter and shorter wavelengths. The shorter the wavelength applied, the smaller the structures one can see, investigate and produce.

„For the first time we are able to set up such a short-wave emitting laser”, says MBI-scientist Dr. Peter Viktor Nickles. The new X-ray laser at MBI will be pumped by a newly developed diode laser. Up to now, most laboratories world-wide use solid-state lasers to deliver to the X-ray lasers a necessary energy, a process called pumping. However, these conventional pumping lasers are not stable enough to ensure accurate measurements. “Particularly in sequence of measurements, when we average the signals, we get fuzzy results”, says Nickles. Diode-lasers are far more stable and thus more suitable for the pumping process. They lead to more exact results and also allow high repetition rates, i.e. fast repeating pulses.

“Our concept to develop an X-ray laser pumped by a diode laser is completely new”, says Nickles. At the beginning MBI aims at repetition rates up to 100 pulses per second (100 Hz). This is only possible with diode lasers. The new X-ray laser should be ready for use by the end of 2007. “This marks a milestone in the development of X-ray lasers”, says Nickles. The Investitionsbank Berlin supports the MBI project through a special subsidizing programme for the promotion of research, innovation and technology (the German abbreviation is ProFIT).

The neighbouring Ferdinand Braun Institute (FBH) is also involved in this research project. FBH provides the special diode-lasers. These light-sources are based on new designs of laminar structures (epitaxy) and lateral structuring. The highly brilliant and efficient laser-diodes emit at wavelengths about 935 nanometers and allow simple and reliable beam formation at low production costs.

One of the great advantages of such an X-ray laser is its comparatively small size. Furthermore, the diode-based pumping lasers require less energy than solid-state pumping lasers. A couple of standard-sized desks would be sufficient to build such an X-ray laser. Thus, an intense short-wave light-source can easily be moved – a feature that is especially interesting for industrial applications.

Nickles comments: “Their flexibility and easy transport make them an interesting source of short-wave pulses complementary to short-wave free electrons lasers (FEL) which work as individual large-scale facilities based on particle accelerators.”

“Table-top X-ray lasers were an important topic of the 10th International Conference on X-Ray Lasers (ICXRL) in Berlin-Adlershof”, says Nickles who, together with his colleagues, has organized the renowned meeting. „Some well-known parameters were improved by colleagues”, reports Nickles on other talks at the conference. One group documented that an X-ray laser was transferred from one laboratory to another and successfully assembled again. More than hundred active participants as well as numerous guests from altogether fourteen countries had come to Berlin.

Josef Zens | alfa
Further information:
http://www.fv-berlin.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>