Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study of solar system speculates about life on other planets

14.09.2006
A comprehensive review by leading scientists about our Solar System which speculates on the possibility of life on other planets has been published.

Solar System Update brings together the work of 19 physicists, astronomers, and climatologists from Europe and the USA in 12 chapters on the sun, the main planets and comets.

The book, co-authored by Dr Philippe Blondel, of the University of Bath, highlights the many recent discoveries and in particular the amount of water, one of the essentials for life, found in the Solar System.

Recent studies have revealed ice in craters on Mercury, the closest planet to the sun, and that liquid water may once have existed on the surface of Mars, and may still be there underground.

In addition, liquid water may exist on moons around Jupiter, in particular Europa, Ganymede and Callisto, underneath a surface of ice.

In his chapter The Habitability of Mars: Past and Present, Thomas McCollom, of the Center for Astrobiology at the University of Colorado, USA, says that though the temperatures on Mars, as low as minus 120 Centigrade, mean that water cannot exist on the surface, there may be a "planet-wide liquid aquifer at some depth in its crust." There is also geological evidence that water has flowed on the surface in the past.

"It seems increasingly apparent that habitable environments very likely exist on Mars today, and may have been considerably more diverse and abundant in the past," he writes.

In his chapter The Icy Moons of Jupiter, Richard Greenberg, of the Department of Planetary Sciences at the University of Arizona, USA, says: "There is an unusually strong motivation to continue to pursue studies of the icy satellites."

He says that three large moons of Jupiter "probably have liquid water layers, and one, Europa, almost certainly has an ocean just below the surface. Naturally liquid water raises the possibility of extraterrestrial life."

However, if the surface ice were very thick, this would cut the water below off from oxygen and sunlight which are important for most forms of life on Earth, and so might have prevented life from developing.

Dr Blondel, who works in the University of Bath's Department of Physics, took 18 months to edit the book, with his co-editor Dr John Mason.

"This book sets out how much water and ice there is in the solar system," said Dr Blondel. "This obviously has implications for our search for extra-terrestrial life.

"By understanding better how the climates of planets like Mars and Venus have evolved, we can understand more about climate change on Earth.

"For instance, the very hot and cloudy climate of Venus is likely to have developed after a runaway greenhouse effect, and the more we know about this the more we can understand some of the challenges caused by our climate change on Earth. "

Tony Trueman | EurekAlert!
Further information:
http://www.bath.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>