Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar-B

13.09.2006
Probing the most energetic explosions in the solar system

Solar flares are tremendous explosions on the surface of our Sun, releasing as much energy as a billion megatons of TNT in the form of radiation, high energy particles and magnetic fields. The Sun's magnetic fields are known to be an extremely important factor in producing the energy for flaring and when these magnetic fields lines clash together, dragging hot gas with them, an enormous maelstrom of energy is released.

This boiling cauldron of plasma is ejected at huge speeds into the solar system and high energy particles, such as protons, can arrive at Earth within tens of minutes, to be followed a few days later by Coronal Mass Ejections, huge bubbles of gas threaded with magnetic field lines, which can cause major magnetic disturbances on Earth, sometimes with catastrophic results. Whilst scientists understand the flaring process very well they cannot predict when one of these enormous explosions will occur. The Solar-B mission, designed and built by teams in the UK, US and Japan, will investigate the so called 'trigger phase' of these events.

"Solar flares are fast and furious – they can cause communication black-outs at Earth within 30 minutes of a flare erupting on the Sun's surface. It's imperative that we understand what triggers these events with the ultimate aim of being able to predict them with greater accuracy" said Prof. Louise Harra, the UK Solar-B project scientist based at University College London's Mullard Space Science Laboratory [UCL/MSSL].

Solar-B will measure the movement of magnetic fields and how the Sun's atmosphere responds to these movements. Since the Sun is constantly changing on small timescales Solar-B will be able to distinguish between steady movements and the changes that will build-up to a flare.

The spacecraft will be launched on the 22nd September 22:00 UT from the Japan Aerospace Exploration Agency (JAXA) Uchinoura Space Centre at Uchinoura Kagoshima in southern Japan. Solar-B will be launched into a Sun-synchronous orbit allowing uninterrupted viewing.

"The Sun behaves unpredictably and will be as likely to flare during spacecraft 'night' when Solar-B would be behind the Earth, which is why we have chosen a special type of polar orbit that will give us continuous coverage of the Sun for more than 9 months of the year," said Prof. Len Culhane from UCL/MSSL, Principal Investigator of the Extreme Ultraviolet Imaging Spectrometer [EIS] instrument on Solar-B.

Solar-B carries three instruments which have been designed to explore the critical trigger phase of solar flares. The UK (UCL/MSSL) led EIS instrument, an extremely lightweight 3-metre long telescope, will measure the dynamical behaviour of the Sun's atmosphere to a higher accuracy than ever before, allowing measurement of small-scale changes occurring during the critical build-up to a flare.

"In order to make the EIS as light as possible we used the same type of carbon fibre structure, from McClaren Composites, that is used to build racing cars, although being in space will subject the material to many more demands than the average racing car" said Dr Ady James, EIS Instrument Project Manager at UCL/MSSL.

The EIS instrument is complemented by optical and X-ray telescopes and all three instruments will help solve the long-standing controversies on coronal heating and dynamics.

"Solar-B will give us an increased understanding of the mechanisms which give rise to solar magnetic variability and how this variability modulates the total solar output and creates the driving force behind space weather," said Prof. Keith Mason, CEO of the Particle Physics and Astronomy Research Council [PPARC], the funding agency behind UK involvement in the spacecraft. Prof. Mason added, "Predicting the timing and strength of solar flares is critical if we want to mitigate the threat to orbiting spacecraft and Earth-based communication systems".

Julia Maddock | EurekAlert!
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>