Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt scientists help bring world's smallest test tubes 'From the Lab to the Fab'

13.09.2006
Yates to present highlights of nanotube research at American Chemical Society meeting

Just by picking up the phone, Nobel Laureate and nanotube pioneer Richard Smalley convinced University of Pittsburgh R.K. Mellon Professor of Chemistry and Physics John T. Yates Jr. to enter the field of nanotube surface chemistry. "Rick Smalley's phone call resulted in six years of exciting work," says Yates, who will present highlights of research done at Pitt during a Presidential Event honoring Smalley Sept. 11 at the 232nd American Chemical Society (ACS) National Meeting in San Francisco, Calif.

In collaboration with J. Karl Johnson, who is the William Kepler Whiteford Professor of Chemical Engineering at Pitt, Yates has extensively investigated the use of single-walled carbon nanotubes (SWNTs) as tiny test tubes. SWNTs are cylindrical molecules with a diameter equivalent to about three atoms. The tube walls are made of a single curved sheet of carbon atoms. Experimenting at such a small scale presents many challenges, but offers big rewards: "Doing chemistry inside of nanoscale test tubes allows one to probe the role of extreme molecular confinement on chemical behavior," says Yates, who also directs Pitt's University Surface Science Center.

In the mid-1990s, Smalley recognized that SWNTs would likely be excellent adsorbents because of the enhanced attractive forces expected for molecules located inside the nanotubes. Yates has developed novel methods to measure the relative number of inside and outside molecules attracted to the nanotubes, while Johnson checks experimental results and provides more details through theoretical molecular modeling than could be provided by experiments alone.

Yates and Johnson, along with their students and postdoctoral fellows, obtained a striking result for water molecules confined inside SWNTs, as reported in a recent paper in the Journal of the American Chemical Society. The water molecules inside nanotubes bond together into rings made of seven water molecules. Yates and Johnson, who also are researchers in Pitt's Gertrude E. and John M. Petersen Institute of NanoScience and Engineering, found that these rings stack like donuts along the nanotube. The rings themselves are bound together by a new type of hydrogen bond that is highly strained compared to the hydrogen bonds within each molecular "donut."

The researchers first detected this novel hydrogen bond experimentally by its unusual singular vibrational frequency and later deduced its character by modeling. "The behavior of water as a solvent inside of nanotubes will probably differ strongly from its behavior in ordinary water based on the donut configuration and the new kind of hydrogen bond discovered in this work," says Yates.

In another development, research showed that reactive molecules confined inside nanotubes are well shielded by the nanotube walls from reacting with active chemical species like atomic hydrogen, one of the most aggressive chemical reactants in the chemist's toolbox. The work suggests that chemists could keep certain molecules from reacting by storing them inside nanotubes, while molecules outside the tube are free to react. "This could provide a new tool for focusing reactive chemistry in the laboratory to select one molecule and exclude another one, tucked away inside of a nanotube," Yates says.

The researchers' pioneering work could lead to future SWNT-based technologies such as time-release medications and highly efficient gas masks to decontaminate toxic gases. In addition, their research promises to yield new insights into basic chemistry. "Confining matter inside of nanotubes could lead to a range of new chemical and physical properties for the confined molecules, allowing chemists a higher degree of control of molecular behavior," says Yates.

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>