Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA experiments with spaceflight participant Ansari to ISS

13.09.2006
Scheduled to lift off on 18 September 2006 from the Baikonur Cosmodrome, Kazakhstan, along with Expedition 14 crew members, NASA astronaut Michael Lopez-Alegria and Russian cosmonaut Mikhail Tyurin, Iranian-American entrepreneur Anousheh Ansari will be the test subject for four ESA experiments during her stay on board the International Space Station.

The experiments in which Ansari will participate are in the area of human physiology: from the search of the effects of space radiation on the crew, to the investigation of the mechanisms governing the development of muscle atrophy in astronauts. The experiments aim to investigate the reaction of the human organism to the space environment, with the ultimate objective of optimizing the conditions for human permanence in space, and to cast light on common diseases affecting people on Earth.

The European Experiment Programme that is currently carried out by ESA on the International Space Station (ISS) covers a large range of scientific disciplines, which encompass physics, chemistry, biology, physiology, psychology and related topics.

Astronauts on board the ISS have a very busy schedule, performing every day experiments on behalf of scientists on Earth, and acting as subjects of experiments themselves.

A number of experiments - especially in the area of human physiology - fall under a long-term plan and require a high number of observations to be carried out in various sessions and on a considerable number of different subjects. For this reason such experiments involve not only the permanent crew of the ISS, currently constituting three members, but also short term visitors, who are regularly ferried to the Station with the Soyuz or with the Shuttle.

This is the case for ESA astronauts, who normally perform a series of experiments during their short missions to the ISS. In 2005, it was Spaceflight Participant Gregory Olsen who acted as a subject for ESA experiments in the frame of an agreement between ESA and Space Adventures, the company who organises the participation to spaceflight missions for private explorers. Soon it will be the turn of the next spaceflight participant Anousheh Ansari to contribute to ESA’s scientific programme.

Effect of space radiation on the human body: Chromosome-2 Experiment

During space flights, crew members are constantly exposed to different types of radiation. Such radiation damages the cellular DNA, and may induce mutations, which could be associated with an enhanced risk of developing cancer. Induced mutations can be analyzed in lymphocytes (white blood cells): the Chromosome-2 Experiment studies chromosome change and sensitivity to radiation in lymphocytes of ISS crew members, with the objective to assess the genetic impact of radiation on the crew.

The quality of the radiation field cannot be simulated on Earth and it is therefore necessary to conduct the analyses in the space environment. The results of the study will enable a better assessment of the genetic risk for humans in space and, in the long-term, will contribute to optimise radiation shielding for future space exploration missions.

Ansari will act as a test subject providing blood samples before and after her flight.

Looking for bacteria onboard the ISS: SAMPLE Experiment

The danger of contamination by pathogenic organisms is a serious problem on space missions. In weightlessness, some bacteria grow faster than under conditions on Earth, and they are much more antibiotic resistant. However, it is not known whether and to which extent this different behaviour of bacteria could affect the health of the crew or damage technical equipment on board.

The SAMPLE experiment's aim is to investigate what kind of microbial species are to be found on board the International Space Station and how these adapt to space environment conditions. Ansari will take samples from herself and from certain areas of the Station, by rubbing swab sticks over surfaces susceptible to having bacteria, for example switches, keyboards and personal hygiene equipment.

Where does back pain come from? Low Back Pain Experiment

In the weightless conditions of space, astronauts often experience some form of lower back pain. This is extraordinary since, on Earth, back pain is associated with heavy spinal load, mainly as a consequence of gravity.

Scientists have therefore developed a hypothesis that lower back pain may develop without compression of the vertebrae. The explanation of the problem comes from the fact that the lower part of the vertebrae, the sacral bone, has to be kept in position between the two hipbones. And a deep ‘muscle corset’ plays an important role in this process, with the tonic postural muscles being activated when getting up in the morning and deactivated when resting.

It is hypothesised that this protective mechanism does not work in space. In space astronauts’ bones lose calcium and strength, their muscles lose mass: therefore, it is thought that the deep muscle corset atrophies during spaceflight, leading to strain in certain ligaments, in particular in the lower region in the back, and causing as a consequence low back pain in astronauts.

The Low Back Pain experiment aims at studying the development of low back pain on crews during spaceflight, with the objective to assess the level of atrophy in the deep muscle corset in response to exposure to microgravity.

Ansari will complete a daily questionnaire during her flight reporting on back complaints. The results will be compared with similar pre-flight and post-flight ground measurements, in order to obtain a better understanding of the correlation between muscle use/disuse and back pain, which would be useful for developing countermeasures for this problem not only in space but also on Earth.

What are the causes of anaemia? NEOCYTOLYSIS experiment

The NEOCYTOLYSIS experiment aims at studying the effects of weightlessness on the hemopoietic system, the system of the body responsible for the formation of blood cells.

The experiment will study a process called neocytolysis, i.e. the selective destruction of young red blood cells. This process has been observed in astronauts as an adaptive response of the body to the specific condition of weightlessness. In space, in absence of gravity, the blood which is normally held in the extremities by gravity shifts centrally, causing high red cells density in blood vessels in the upper part of the body; this induces a response, which aims at resetting the mass of red blood cells by means of their selective destruction, and that causes in turn a temporary anaemia in astronauts over the first days after landing.

This process is therefore regarded for astronauts as a natural response to specific environmental conditions. However, it may also occur in pathological conditions, for example as anaemia in patients affected by renal failure. The experiment will be therefore of crucial importance for casting light and possibly for contributing to the development of solutions for this serious disease.

Ansari will act as a test subject providing blood samples before and after her flight.

Maurizio Belingheri | alfa
Further information:
http://www.esa.int/esaHS/SEMQRH7LURE_index_0.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>